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Chapter 1
Life and the Scientific Method

The movie The Puppet Masters intro-
duced America to a field of science known 
as exobiology. Adapted from a novel of the 
same name by Robert Heinlein (spoiler to 
follow), the movie featured an especially 
nasty species of aliens who glued themselves 
to the backs of their hu man victims, sent 
tentacles into their brains, and controlled 
them like, well, puppets. Julie Warner 
played Mary Sefton, a NASA exobiologist 
called to the spacecraft’s landing site. Sam 
Nivens, a government operative played by 
Eric Thal, asked Sefton about exobiology. 
The exchange went like this:

Nivens: So tell me Mary. What exactly do 
you do for NASA?

Sefton: My specialty is exobiology.
Nivens: Exobiology?
Sefton: Uh-huh. It’s a study of what alien 

life forms might be like.
Nivens: You actually make a living at that? 

Seems like it would be mostly guesswork.
Sefton: Well, we had a little joke in school. Ours is the only sci ence that didn’t 

have a subject matter.

To the American middle school student trained in the “scien tific method”, this 
would be the end of the story about extrater restrials, at least the part belonging 
in a science class. There, “the scientific method” is a prescription that begins with 
neutral observations of the world. Objective hypothe ses then follow from those 
observations. Scientists test these hypothe ses by deftly constructing experiments, 
prefera bly experiments that distinguish between alternative hy potheses. 

The Puppet Masters (1994, Hollywood 
Pic tures) describes a contest between the 
best minds on Earth (such as the plane tary 
protection expert Andrew Nivens, played by 
Donald Sutherland (above) and a vicious 
species of ali ens (napping below) in a bat tle 
that required the science of exobiol ogy to win.
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2        Life, the Universe and the Scientific Method

This prescription pretty much rules out exobiology as a science. If no alien life 
is available to observe, how can we construct objective hypotheses about aliens 
by observing them? Even if we manage to construct hypotheses, how can we test 
them? Without observations, hypotheses, or tests, we have no scientific method. 
Therefore, no science of exobiology is possible. Only “guesswork”.

Yet the public is interested in the questions like: Are we alone in the universe? As 
I write this, the NASA Phoenix laboratory is on the surface of Mars. The absence 
of reported results for just one week in June 2008 sent the internet into a real life  
episode of The X-files. Was NASA concealing Martian life that it had found, the 
bloggosphere asked. “What do the Martians being concealed by NASA look like?” 
It went downhill from there.

In part, our fascination with aliens comes from our interest in other “big ques-
tions”. What is ‘life”? How did it arise? What is the future of our life in the cosmos?

What activity other than science might effectively address such questions? Phi-
losophers have made less satisfactory progress addressing many of these questions 
without a scientific method than four centuries of science having a method. 

Thus, the public believes that “sci entific” opinion is better than “non-scientific” 
opinion. A popular book by Tho mas Kida subtitled “The six basic mistakes we 
make in thinking” ex horts us to “think like a scien tist”. OK. Seems good. But how?

Understanding life as a “universal” (or, as philosophers like Carol Cleland at the 
University of Colorado say, as a “natural kind”) is a goal of re search in my own 
laboratory. Accordingly, one goal of this book is to explain how that research is 
making progress towards answering these and other big questions. 

A second goal is to show how “the scientific method” as taught in mid dle school is 
different from what real scientists actually do. Sci ence often con cerns things that are 
not observed. Observations are rarely neu tral. Hypothe ses are rarely objective. Proof 

is impossible for almost any inter esting proposi-
tion. Disproof is also not easy. Experi ments rarely 
distin guish alter native hypotheses.

Thus, the real practice of sci ence is very human, 
with weaknesses intrinsic to humans. In general, 
humans want to believe something. They then 
select from many observations only those that 
support that want. Like dead people that Cole sees 
in the movie The Sixth Sense (1999, Hollywood 
Pictures), humans see only what they want to see. 

The third goal of this book is to teach how 
scientists make progress despite this aspect of 
their humanity. Successful scientists develop 
within themselves an intel lectual discipline that 

Galileo Galilei (1564-1642) 
by Giusto Sustermans.
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Chapter 2
A Definition-Theory of Life

In 2002, I got a call from David 
Smith, a physicist who works for the 
National Academy of Sciences. 

“Steve”, David asked, “the National 
Research Council has been com­
missioned by NASA to write a report 
on what alien life would look like. 
John Baross [a microbiologist at the 
University of Washington] said he 
would chair the committee but only if 
you agreed to co­chair”.

Five years later, after defections, disease 
and delay, many hours on airplanes, 
and a separate trip to Washington D.C. 
to sit with David to rewrite the entire 
draft, the report finally appeared in the 
summer of 2007. Entitled The Limits 
of Organic Life in Planetary Systems and 
published by the National Academy 
Press, the report provided an in­
depth discussion of some of the topics 
presented in the chapters to fol low in 
this book. Readers inter ested in a more 
technical discussion of exobiology than what is presented here are re ferred to the 
National Research Council report. 

 One thing will not be found in the National Research Council report, however: 
A definition of life. This is no accident. Early in the commit tee’s deliberations, 
a conscious decision was made not to include a definition of “life” in the book. 
Perhaps this reflected cowardice. It may, however, be better viewed as an expedient 
based on wise expe rience. Nearly every member of the panel had spent hours in 
other committee meetings dis cussing that definition with little productive out­
come. We did not want to spend any more hours doing the same.

The book produced by the National Research 
Council committee co-chaired by John Baross and 
Steven Benner. The book is an excellent place to go 
for a deeper understanding of many topics covered 
here, but especially where in the Solar System weird 
life might exist.  Courtesy National Academy Press.
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Chapter 3

Four Approaches to Understanding Life

Life as a universal presents a quandary similar to that faced by Galileo
Throughout this book, we will use the definition-theory that considers life to be 

a self-sustaining chemi cal system capable of Darwinian evolution. Unfortunately, 
this definition-theory creates a quandary analo gous to the one faced by Galileo. 
We are worried about life as a universal, a “natural kind” of thing. But this includes 
life that we have not observed, that we may not observe for some time, and for 
most life in the universe, that we will never observe. How can we be certain that 
we have chosen the correct definition-theory for life or even one that is useful? Can 
our definition-theory be used to recog nize alien life should we encounter it, even if 
it does not plaster itself to our backs to control us like pup pets?

First, don’t panic. Science often concerns what it cannot directly observe. 
Next, we need to identify experimental approaches that serve the same role for 

exobiology as the rolling balls did for Galileo’s studies of the solar system. Since we 
cannot observe life universally, we must do experiments here on Earth to help us 
decide whether we have chosen a good definition-theory for life with the potential 
for universality. The next chapters outline some of these experiments and meth-
ods, and tell the stories of how their pursuit created (and continues to create) new 
scientific methods.

No bucks, no Buck Rogers
First, a comment about one factor that determines the course of science. That 

comment comes from Tom Wolfe’s book The Right Stuff, which includes the fol-
lowing exchange between test pilots in the 1940’s:

Operative: You know what really makes your rocket ships go up?
Pilot: The aerodynamics alone are so compli cated …
Operative: Funding. That’s what makes your ships go up. No bucks, no Buck 

Rogers. Whoever gets the funding gets the technology. Who ever gets 
the technology, stays on top.

One factor driving science not taught in middle school are decisions that 
direct resources to fund sci ence. Different organizations offer such resources in 
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different ways. Some government 
agencies and private foundations 
have spe cific missions and direct 
resources to meet those missions. 
Other organizations claim to seek 
individual innovators, hoping 
to find individu als worthy of 
“pioneer awards” or “genius 
prizes”. Some grant prizes after 
specific goals are met, such as 
Lindbergh’s crossing the Atlantic 
or the Ansari X Prize for putting a 
rocket into space.

Some organizations seek  com-
munity input to determine what 
the mission should be, how it 
would best be met, or what goals 

are worthy of prizes. Others decide this on their own. Some evaluate proposals 
from applicants; others do not accept proposals. Some evaluate proposals internally, 
while others distribute them to individuals in the community and base funding 
decisions on peer review.

The sociology associated with science funding needs volumes to describe. We will 
not address this topic here with any generality, mentioning the topic only when 
funding decisions drove the science that we interests us. As a general rule, however, 
com munity-guided efforts do not fund “big questions” or breakthrough research. 
Nor are they expected to. Galileo was not funded by the Pope, and certainly not 
after the Pope understood what Galileo was up to.

In part our disregard of this important topic comes from the difficulty of 
obtaining the unbiased data that is needed to examine it “scientifically”. Many 
examples exist, of course, where a grant of bucks has had remarkable impact in 
science. How ever, the absence of funding for a project gen erally means that it will 
not get done. This in turn means that we will never know that this breakthrough 
science had the chance of existing. Not knowing of projects that might have been, 
we cannot begin to evaluate how much better the global out come would have been 
had a re jected project been funded and a funded project been rejected.

 This is a common problem in history. We know well of Martin Luther and 
his Protestant Ref ormation. We know little about Jan Hus and his protestant 
reformation. Why is this so? Most simply, the political environment surrounding 
Luther allowed him to survive the Inquisition, just as Galileo’s fame allowed him to 
survive. No analogous political environment surrounded the unfortunate Hus. He 
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Chapter 4
Working Backwards in Time 

from Life on Earth Today

As humans, we have a special advantage as 
we seek to understand life as a universal: Unlike 
Galileo, who had to enter celestial mechanics with 
no knowledge of the subject, all children begin 
their study of biology knowing that life exists. 
Further, we humans instinctively distinguish the 
living from the non-living. We begin doing so as 
children long before we know intellectually how 
challenging it is to formalize a definition-theory 
that makes this distinction rigorously. 

Thus, biology is a science with a subject 
matter. Therefore, if we want to understand life 
as a universal, at least we have a place to start: the 
life that surrounds us on Earth. 

Many books offer information describing what 
is known about terran life. These are written 
at many levels, from picture books for young 
children to textbooks designed to train the next 
generation of biolo gists. We will not summarize 
their contents here. Our discussion of life as a 
universal relies on only a few features of terran 
biology; we will explain these as we go along.

Classification as a method in biology
We start with a simple scientific method: 

classification. As Heinlein wrote in his book 
Have Space Suit, Will Travel (1958), library 
science is basic to all science. Much science 
begins as an attempt by humans as librarians to 
classify what humankind has already observed. 

Title page of Systema Naturae (1816) by 
Charles Linnaeus. This intro duced the 
animal-vegetable-mineral trichotomy.
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Humans are instinctive classifiers. Unfortunately, different instincts give different 
classifications. Therefore, classifi cation systems and the language they use often tell 
us more about the classifier than about the classified. We will see many examples 
of this in this chapter.

The “animal-vegetable-mineral” classification system is one that we learn early 
in school. It is associated with Charles Linnaeus, the En lightenment sci entist 
who based his General and Universal System of Natural History on this three-way 
division. Leaving aside his exag ger ated use of the word “universal” (Linnaeus had 
no access to extra ter restrials), this classi fication distinguishes the non-living from 
the living. It then di vides the living into two classes, animal and vegetable. 

In practice, this division of life is done by inspecting characters, at tributes of the 
entity being classified. As with green emeralds, a char acter can be color. Or the 
ability to walk. For example, to make the animal-versus-vegetable classifica tion, we 
ask: Is the living entity green, and can it move around? If the entity is not green and 
can move, it is animal. If it is green and cannot move, it is vegetable. 

It might be argued that “able to move” 
is a better character for classi fying terran 
life than “green in color”. A frog is green, 
but can move. Since we instinctively 
believe that a frog is better classified as an 
ani mal, mobility must trump greenness. 
A Japanese maple tree is red, but the tree 
cannot move.  We instinctively believe 
that the maple is a plant. Immobility 
apparently trumps non-greenness in our 
clas sification scheme.

If anthropologists tried to infer our 
constructive beliefs about classification 
by examining our behavior, they would 
note that the ease with which we discard 
classi fication char acters when they fail 
to deliver a desired classification. This 
sug gests that we constructively believe 
that “ani mal” and “plant” are more fun-
damental concepts than characters them-
selves. This is metaphysical pro gress, as it 
suggests that “animal” and “vegeta ble” are 
the natural kinds, at least to us.

The characters are useful nevertheless 
because they provide a way to determine 

This frog is green but can hop. The frog is 
“therefore” an animal. Leaves of the Japa nese 
maple tree are red but the tree cannot hop. The 
tree is “therefore” a plant.
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Chapter 5
 Forward in Time: 

From Chemicals to the Origin of Life

In Chapter 3, we used a graphic to illustrate four ways to indirectly explore life 
as a universal concept. Part of that graphic is reproduced below. Chapter 4 focused 
on the bottom wedge of the graphic, which represented a backwards-in-time 
approach to understand ing life. Here, the sequences of ancient genes and proteins 
are inferred from the sequences of descendent genes and proteins. Bio technology 
is then used to bring these ancient biomolecules back to life for study in the 
laboratory. This allows experi mental meth ods to be brought to bear on historical 
hypotheses involving parts of living 
systems. 

In the two decades since pale-
ogenetics was introduced as an 
experi mental science, several dozen 
studies have developed its methods. 
Many more paleogenetics studies 
will become possible as sequences 
e merge from whole organism DNA 
sequencing. A new field of science has 
been created. A sci entific com munity 
has emerged with its own culture and 
stan dards-of-proof. Paleogenetics is 
now “normal science”. 

But what has paleogenetics said 
about life as a universal? The back-
wards-in-time ap proach has helped 
broaden our view of what life might 
be by providing broad sup port for 
the RNA-world hypothesis. This 
hy pothesis proposes that an earlier 
episode of life on Earth used RNA 
as its only encoded bio polymer. Ac-
cording to this life form, no proteins 
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were encoded. This, in turn, suggests that life based on just one bio polymer is 
possible, even though such life has never actually been observed. As we shall see 
later, single biopolymer life might be the most likely to be encountered as we 
explore the Solar System.

Unfortunately, the realities of natural history on Earth mean that working 
backwards in time from the life that we observe today on Earth makes it unlikely 
that we will be able to model forms of life at the beginning of the RNA world. The 
various lineages of terran life apparently separated well after terran life invented 
proteins. Until we find a lineage of life that diverged within the RNA world, we 
will not be able to triangulate our way back to build models for any RNA life, and 
certainly not at the beginning of RNA life. 

This is a shame. It may be that RNA life was the first form of life on Earth. This 
would mean that RNA life began just after chemistry gained access to Darwinian 
evolution. As the closest thing to non-biology this side of the frontier between 
non-biology and biology, such life would reflect most the “essence” of life as a 
universal. To model this most basic life form, we must look else where.

Working forwards in time from chemistry
Fortunately, the graphic in Chapter 3 suggests where else we might look. 

Complementing the lower wedge is an upper wedge that represents research that 
works forwards in time. This research 
starts with a list of organic molecules 
that might have been present on 
Earth before life formed. It then tries 
to build a model for how Darwinian 
systems might have emerged from those 
molecules. 

How can we possibly know what 
organic molecules were present on Earth 
four billion years ago? Is this not just an-
other science without a subject matter? 

To ad dress this question, we rely 
again on our favorite aphorism from 
geol ogy: The present is the key to the 
past. To apply this aphorism, we begin 
by identifying organic com pounds that 
arrive today from the cos mos to the 
Earth on meteorites. Sandra Piz zarello, 
George Cooper, and many others 
have extracted and identified or ganic 

This is a “car bona ceous chon drite”, a meteorite 
whose dark color comes from the or ganic compounds 
that it contains.
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Chapter 6

Exploration to Expand Our View of Life

In the past two chapters, we 
have gone as far as we could 
to explore life as a universal 
concept based on what we 
know about the present. We 
exploited two complementary 
strategies. First, we described 
an approach based on natural 
history that begins with the 
life that we know today and 
works backwards in time, in­
fer ring structures of ancient 
genes and proteins and re­
surrecting them for study in 
the laboratory. This permitted 
experiments to explore and 
con strain historical hypotheses 
that connect chemistry to Darwinian processes. We observed a success in science, 
the development of a new field with its own methods and standards­of­proof and 
the emergence of a new kind of “normal science”.

The complementary approach begins with organic compounds likely to have 
been present on early Earth and works forwards in time in an effort to obtain 
chemistry that supports Darwinian evolution from chemistry that does not. Here, 
progress is less evident. The community has developed no accepted standards­
of­proof for evaluating the relevance of a prebiotic experiment to the problem of 
origins, let alone a set of methods for doing so. Nevertheless, progress has been 
made. Paradoxes central to origins have been recognized. Research focused on these 
paradoxes has identified solvents and minerals that offer at least a few approaches 
mitigate the intrinsic tendency of organic molecules to form tar rather than life.

Although these approaches have placed new constraints on our view of life as a 
universal, these constraints are not very tight. The first has suggested that simpler 
forms of life based on just one biopolymer (RNA) might be possible, even though 
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no such RNA on Earth is known. However, because of the realities of natural 
history, it is difficult to triangulate from today’s biosphere back in time to a form 
of life deep within the “RNA world” that is simple enough to capture life’s es­
sentials. Known life on Earth evidently all diverged from an ancestor that arose after 
terran life gained access to proteins, and that carried baggage from accidents and 
contingency associate with perhaps a billion years of history on Earth. This baggage 
obscures the “essence” of truly primitive life even for that part of the RNA world 
that we might infer by extrapolation back in time from life found on Earth today.

The forwards­from­chemistry approach is not similarly defeated by natural 
history. Nevertheless, we still do not have a convincing model to get RNA from 
plausible prebiotic organic molecules. Further, even if we find ways to get pools 
of RNA spontaneously on early Earth, we have no estimate of the likelihood that 
those pools contained RNA molecules able to ignite Darwinian evolution. As a 
consequence, the culture lacks constructive belief in the possibility of an RNA­first 
scenario for the origin of life. Therefore, two essential ingredients for success in 
science (funding and enthusiasm) are not in hand.

We need some new ideas
This is no reason for despondency. Every science worthy of the name has had 

similar issues at some point in its history. Nevertheless, one thought comes easily 
to readers of Chapters 4 and 5: We need some new ideas.

Chapters 4 and 5 have provided examples (if examples are needed) of the 
value of new ideas, even as we as anthropologists observe the human propensity 
to reject these. The idea of resurrecting ancient proteins brought experimental 
methods to bear on historical hypotheses, something that many had thought was 
impossible. The idea that borate minerals might stabilize ribose as it is synthesized 

under prebiotic conditions 
revitalized thinking about 
the RNA­first hypothesis. 
The idea of formamide as 
a solvent to manage the 
intrinsic destructive power 
of water mitigates some of 
the problems with water as 
a solvent for originating life.

But a prescription to get a 
new idea is more easily writ­
ten than filled. The human 
brain does not easily create 
new ideas. This is perhaps a 
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Chapter 7
 Synthetic Biology: If We Make It, 

Then We Understand It

So far, we have emphasized how different communities of scientists differ in 
their application of scientific methods. Let us now do the opposite by focusing on 
research strategies that different fields of science share. To the extent that different 
fields must interact to understand life, the similarities that connect scientific fields 
and their various methods will be important.

For example, observation is done in essentially every scientific field. Auto 
mechanics, symphony conductors, and others who do not call themselves scientists 
also observe. Indeed, it is difficult to conceive of a human activity that does not 
involve observation of some kind.

Of course, scientists in different fields observe in different ways. Moose in 
Montana are observed using binoculars. Moons around Jupiter are observed with 
telescopes. Molecules of methane in interstellar clouds are observed by microwave 
spectroscopy. 

Nevertheless, observation in all of these 
disciplines shares one thing: it does not 
al ter the observed system. Neither the 
moose, the moons, nor the methane be­
have differently because they are being 
ob served.

Perturbation is another strategy that is 
used in nearly every science, as well as by 
mechanics, conductors, and others who 
do not call themselves scientists. Here, the 
system of interest is probed. Observation 
follows to see how the system responds to 
the probe. The conductor might poke a 
first violinist and see if he plays faster. The 
auto mechanic might oil an axle and see if 
squeaking stops. The scientist might drop 
hay near a moose and see if he eats it.

Scars (dark regions in the upper hemisphere) were 
formed where pieces of Comet Shoe maker-Levy 9 
crashed into Ju piter. The cometary probe re vealed 
behaviors of Jupi ter’s atmosphere in ways that 
simple observation could not. 
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Useful perturbations may also come naturally. For example, when fragments 
of the Shoemaker­Levy 9 comet hit Jupiter in 1994, the Jovian atmosphere was 
perturbed. Even though planetary scientists did not deliberately throw the comet 
at Jupiter as a probe, they certainly used observations of the planet after Jupiter was 
naturally probed to test their models for the Jovian atmosphere. 

Analysis generates lists of parts
Analysis is yet another research strategy. Analysis begins by taking a system apart, 

dissecting it to give pieces. These are then named and put on a parts list. Such a list 
can not generally be obtained by simple ob serva tion or by observation that follows 
perturbation. It requires in most cases that the system un der study be destroyed.

Analysis is found throughout science. In geology, for example, analysis was used to 
dis cover that green emeralds, green peridots, and green rocks from Solomon’s mine 
contain the elements beryllium, magne sium, and copper (respectively). In chemistry, 
analysis showed that meth ane is built from one car bon atom and four hydrogen 
atoms (CH

4
), ammonia is built from one nitrogen atom and three hydro gen atoms 

(NH
3
), and water is built from one oxygen atom and two hydrogen atoms (OH

2
). 

In biology as classically done, analysis begins by killing the system. Then, the 
life­that­was is physi cally dissected and the parts encountered are listed. Classically, 
these lists include the names of the organs, bones and tissues, names that middle 
school science students are forced to memorize.

Only technology limits what ends up in a parts list. When applied to living 
systems with a low­tech op tical microscope, for example, analy sis gener ates lists 
of cell types such as the types of neurons in the brain or the types of cells in the 
blood. If sup ported by electron micros copy, analysis gen er ated lists of sub­cellular 
struc tures such as the nucleus, the ribo some and the mitochon drion. 

The value of such analysis in biology is in dis put able. Indeed, progress in biology 
over the last century has 
been measured in what 
ana lysis has pro duced. 
Christian de Duve, whom 
we met in Chapter 5 dis­
cussing the ori gin of life, 
won his Nobel Prize for his 
work ana lyzing structures 
within cells. Peter Mitchell, 
whom we met in Chapter 
3, won his Nobel Prize for 
his work ana lyzing mito­
chon dria. The beginnings of analysis in biology
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Chapter 8
Weird Life. Life as We Do Not Know It

Congratulations. We have survived seven chapters of heavy lifting together. 
We began with a discus sion of the differences between “the scientific method” 
taught in middle school and the ac tual practice of science in different scientific 
communities. We considered ways in which dif fer ent communities construct 
arguments, do experiments, and decide when experiments should end. We have 
encountered science that functions as science should; we have encountered science 
best characterized as dysfunctional. This is heavy stuff.

We also discussed how scientists might consider one specific non-observable: 
life as a “univer sal”, also known as a “natural kind”. We first worked backwards 
in time from observations of modern organisms on Earth to infer the structures 
of the genes, proteins and metabolisms used by ancient organ isms. Developing 
the field of paleogenetics, we learned to resurrect ancient proteins for study in the 
labo ratory. This brought experimental methods to bear on historical hy potheses, 
helping them become more than just-so stories. 

This backwards-in-time approach helped us infer the habitat of bacteria living 
two or three bil lion years ago (it was hot). It provided the outlines of a form of life 
that did not have any encoded proteins, but in stead used RNA for both genetics 
and metabolism. This, in turn, adumbrated a simpler form of life than is known 
on Earth today. It expanded our view of what kinds of life are possible.

Unfortunately, this approach did not allow us to infer the structures of the 
simplest past forms of life on Earth, including the life that first gained access to 
the power of Darwinian evolution on Earth (assuming life began here). Having 
a model for such a life form would further constrain views of the essence of life. 

We therefore examined an alternative approach to understand life that works 
forwards in time. This approach started with organic compounds that were 
almost certainly pre sent on early Earth. Relying on chemical theory, we looked 
for ways that RNA might spontaneously emerge under conditions on early 
Earth. Progress has been made, especially concerning hypotheses for prebiotic 
synthesis of pieces of RNA. In particular, we have come to appreciate the power 
of minerals to control the intrinsic propensity of organic molecules to become 
tar. 

The forwards-in-time approach encountered serious methods issues, however. 
Different partici pants in the community do not agree on the types of experiments 

265
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relevant to address questions sur rounding life’s origins. Indeed, many practitioners 
do not un derstand that the absence of com munity-shared standards is a problem 
that needs to be ad dressed. Chairs are thrown and invectives are traded.

So we turned to exploration to provide a jolt of discovery that comes most 
easily when one leaves home. Here, we encountered two new problems. First, any 
search for life in the cosmos is expensive, and the bucks for a systematic search are 
simply not available. Also, we learned that our understanding of biosignatures is 
inadequate to interpret data from the partial searches that are now fundable. The 
result has been contra dic tory certitude from competing experts. Some community 
members argue that life is absent else where in the Solar System. On Mars, for 
exam ple, water is absent or frozen or too salty. Op posing this are members like Gil 
Levin who argue that life on Mars may have already been detected.

This notwithstanding, constructive hope remains to find life on Mars, Titan, 
and Europa (for starters), life that would be recognizable under theories that tie 
our definition-theory of life to molecular structures having a potential to support 
Darwinian evolution. The polyelectrolyte theory of the gene and the re peating 
dipole theory of metabolic catalysts are two. However, the number of places where 
Darwinian mole cules are possible is far larger than the bucks available to look.

Therefore, we considered a fourth approach to get our hands on a life form 
that is not just an evolutionary cousin of the life that we already know: Synthetic 
biology. Syn thetic biology allows scientists to be pro active; they are challenged to 
design new chemical systems capable of Darwinian evolution in the laboratory. If 
we understand life and its parts, we should be able to synthesize some life of our 
own. If our theory empowers a successful synthesis, we can say we understand.

Several synthetic protein enzymes and synthetic genetic systems have been 
produced to meet challenges in synthetic biology set with increasingly higher bars. 
Through these, we can say that we understand the first factor of 10,000 in biological 
catalysis produced by proteins. We can say that we  understand essentially all of 
the discriminatory power of natural genetic systems. The empowering theory is 
simple, requiring no numerical simulations. Indeed, numerical simulations do not 
empower further.

Moving the bar higher, we have now synthesized chemical systems ca pable 
of Darwinian evolution, allowing us to say that we constructively understand 
something about what structural features support Darwinian evolution. Synthetic 
biolo gists are contemplating the next grand chal lenge: to make self-sustaining 
Darwinian chemical sys tems based on chemistry still more different from that 
found in natu ral terran biology. As with any grand challenge, this will drag us 
across uncharted territory where we must solve unscripted problems in ways where 
failure cannot be overlooked, driving discovery and para digm change. But we will 
need bucks to do it.
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The art of scientific speculation
Even with this heavy lifting, our four 

approaches have still not taken us very far 
from the life that we already know. Our 
synthetic proteins still look like proteins. 
Our synthetic genes still look more or less 
like DNA. Are more exotic forms of life pos-
sible? If so, what would they look like? How 
would we recognize them as “life”? These 
were the questions raised by NASA when 
it set up the committee of the National 
Research Council that I co-chaired with 
John Baross, a distinguished microbiologist 
at the University of Washington.

Some questions are best answered by a 
simple: “We don’t know”. As we have noted, 
we have direct knowledge of only terran life 
forms, all of which appear to be related by 
common ancestry. We have no method to 
decide whether the similarities that they 
share reflect common ancestry or the needs 
of life as a universal. But if we retreat to 
a position of defensible agnosticism, we 
have no fun. Ac cordingly, we close with 
a chapter on what science offers by way 
of method that supports entertainment: 
Constrained speculation.

Scientific speculation balances the 
known with the possible

The modifier “constrained” is what allows 
speculation to be given the coveted title 
“scientific”. Fiction writers can propose anything. Sci entific speculation, however, 
must be constrained by what we know (or think we know) about the real world. We 
are not allowed to say that water is H

3
O as we speculate on the form of alien life. On 

the other hand, the chal lenge in scientific specu lation is not to be too constrained. We 
want to stray as far as possible under physical law, but not farther. 

So far, we have not strayed a great distance from what is known. For example, 
even though the synthetic genetic systems described in Chapter 7 have six letters 

The best science fiction writers also use scientific 
constraints. For example, Steven Spielberg’s ET 
has the same number of nucleotides in its DNA 
(six) as the number of nucleotides in some of the 
Darwin-ready syn thetic genetic systems that we 
made in our laboratory. As ET lay dying, one 
hears chatter that the extra letters are “inosine and 
a pyrimidine that we cannot identify”. Inosine 
has the structure below. Return to Chapter 7. 
Play Watson-Crick. What can that pyrimidine 
be? There are only a few possibili ties, making us 
wonder why the people wanting to dissect this 
cute alien could not identify it. Remember, ET: 
Shoot or hide. Forget phoning home.

Inosine
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Chapter 9
Concluding Remarks: 
Think Like a Scientist

Michael Crichton, author of Jurassic Park, The Andromeda Strain, and other 
parables of modern times, was always pre pared to show the human side of science. 
His apprecia tion of this aspect of science method came from his training in 
medicine, where he had ample opportunity to observe the medical arts as they 
are actually practiced. Crichton was nevertheless mostly an observer, an anthro­
pologist of science who had no profes sional stake in the science that he describ ed. 

I have also tried to show science as it is practiced. However, I have profes sional 
views about most of the topics pre sented here, excepting those that were contro­
versial only in centuries past. I worried about the possibility that this involvement 
would create a lack of objectivity, but set it aside. Frankly, I could not see how the 
practice of science could be de scribed from anyone other than an insider. An  out­
sider simply would not know enough about the details to have informed opin ions.

What is remarkable about the science that we have discussed is how flexible its 
methods are. This sentiment has been expressed by non­scientists, notably in the 
idea that “anything goes” as elabo rated by Paul Feyerabend, my col league at the 
E.T.H. in Swit zerland. One certainly has no dif ficulty finding examples in science 
where stamp collecting was infor mative, disproof was best ignored, mathematical 
formalisms impeded progress, data were se lected to support a desired theory as 
opposing data were ignored, peer re view was wrong, and publication was forbidden. 
Upon re­reading these 300 pages, I was sur prised to see so many examples of this 
in its nar ratives.

Which brings me to a question that arises of ten in curriculum committee meetings: 
What do we teach the students? This question is not as conspiratorial as it might sound 
to a stu dent reading this book; your teachers are actu ally in terested in seeing you have 
successful ca reers in science. But if Feyerabend is right, if new theo ries are accepted 
not because they comply with a scientific method but because their supporters made 
use of “any trick, rational, rhe torical or ribald” necessary to advance their cause, we 
need to enrich our science curriculum with more courses on the rhetorical arts. 

I share Fey era bend’s understanding of the appalling implications of his con clu sion. 
He wrote: “’Any thing goes’ is not a ‘principle’ I hold … but the terri fied exclamation of 
a rationalist who takes a closer look at history” (Against Method, 1975). Nevertheless, 
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I suspect that Paul is not entirely correct. If advocacy with out method is all that 
scientists do, we would not expect to see the progress that science has produced. 
There must be something more to science as it is practiced and there is evidence 
for something more. 

First, progress does not appear to be random, and does not exclusively come 
from scientists who were in the right place at the right time (al though being so 
undoubtedly helps). We have mentioned a few scientists who re peatedly con­
tributed to progress in many fields. Linus Pauling was a promi nent example, but 
Frank Westheimer, Joseph Kirschvink, Christian de Duve and Freeman Dyson 
have appeared at more than one place in this book in differ ent contexts. One sees 
in their science a focus on method, an under standing of the need to avoid self­
deception, and a willing ness to con struct for each problem a set of rules appro­
priate to that problem. 

Above all, we want to teach students to recognize that scientists need a 
discipline, largely self­imposed, that helps them avoid traps that are set by Nature, 
circumstance, colleagues, community, culture and their own minds. We rarely 
write out syllogisms; life would be unbearably slow if we did so fre quently. Yet we 
must al ways be prepared to do so. We rarely consider crackpot assaults on deeply 
held beliefs; our lives would be hope lessly distracted if we did so routinely. Yet we 
must occasionally do so. Our constructive be liefs come in part from learning by 
author ity and were shaped by ac cidents in our training and pro  fes sional lives; it 
cannot be any other way. But from time to time, we must ask our selves whether 
we construc tively believe what we say we believe, why we believe it, and whether 
we really should not be lieve something else. In do ing so, we must be prepared to 
know and revisit primary data that are behind our beliefs.

With this heavy stuff out of the way, we can return to science for its intellectual 
and enter tainment values. Given tools described in Chap ter 4 that allow the dis­
cipline of experimental science to be applied to historical models for biology, we 
see the oppor tunity to create a “grand unification” that joins the chemis try of 
pro teins, genes, me tabolisms and pathways by way of cells and or ganisms to the 
ecosystem, the planet, and the cosmos. Based on the profusion of genome se­
quence data now becoming avail able, there seems to be no barrier to prevent this 
unification and its application to human biology, including disease. 

With only slightly less enthusiasm, we antici pate the imminent emergence of 
more coherent mod els for the origin of life. These will be written in the language of 
chemistry, the language that we developed in Chapter 5. There remain problems, 
and not just in the sociology behind the conflict be tween those who dis agree on 
what ex peri ments are rele vant to the origins problem. A real potential ex ists that 
cur rent the ory will never solve the problem at hand, keep ing open the possibility 
for a true revolution in the related and sur rounding sci ences.
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The potential for discovery through explora tion is also considerable. The pace of 
NASA and ESA missions is slow, a reflection of their cost as well as the difficulty 
of knowing just where and how to look for an alien life that has un known 
form. Nevertheless, various considerations of universal chemistry and (possibly) 
universal biology suggests that we have a chance of find ing evidence for an alien 
life by looking for specific kinds of organic molecules in Martian rocks and Titan’s 
methane oceans. If we find alien life, this will change the game, perhaps not from 
theory, but certainly the data available from which to construct theory. This would 
be big.

The only thing bigger, and this be cause it is more likely to happen sooner, would 
be to construct an artificial chemical system ca pa ble of Darwinian evolution in the 
laboratory. Having in hand our own artificial form of life would set in motion a 
century of new biology, one that builds from the bottom up rather than dis sects 
from the top down. Just one example would open doors. Within the well­controlled 
confines of artificial life, we would first attempt to build a synthetic metabolism. 
In doing so, we will learn more about metabolism, natural and syn thetic. Once 
synthetic metabolisms are in hand, we would use the artificial Darwinian system 
as a platform to en gineer regulation. Again, this activity could not help but teach 
us about regulation, natural and synthetic. 

Most important about this “grand challenge” is that it is risky; it may fail. Of 
course, we need to give it a serious try and would need the bucks to do so. But if a 
laboratory Darwinian chemical system could not reproduce the behav iors that we 
have come to de mand from life, then some thing might be wrong with our defini­
tion­theory of life. The synthetic challenge is already drag ging scientists across un­
charted ter ritory to ad dress un scripted prob lems in ways where failure is obvi ous. 
This ef fort will drive dis covery and paradigm change like almost nothing else in 
sci ence. All that is needed to pursue this understanding is funding; no bucks, no 
Buck Rogers.

Finally, what are our prospects of encountering truly weird life? Something 
that does not live in water, uses different sets of chemical elements, or has two 
dimensional ge netic infor mation systems, for example? We simply do not know, 
but it ap pears small for the immediate future, unless we are lucky enough to 
stumble on an RNA­world organism left over from our an cestry. The certainty of 
many that this will not happen is balanced by the certainty that if such weird life 
were beneath our feet, the tools that we are using to search for life on Earth today 
would not find it.
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