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A combinatorial distance-constraint approach to predicting
protein tertiary models from known secondary structure
Gareth Chelvanayagam®, Lukas Knecht, Thomas Jenny, Steven A Benner?

and Gaston H Gonnet

Background: Distance geometry methods allow protein structures to be
constructed using a large number of distance constraints, which can be
elucidated by experimental techniques such as NMR. New methods for
gleaning tertiary structural information from multiple sequence alignments make
it possible for distance constraints to be predicted from sequence information
alone. The basic distance geometry method can thus be applied using these
empirically derived distance constraints. Such an approach, which incorporates
a novel combinatoric procedure, is reported here.

Results: Given the correct sheet topology and disulfide formations, the fully
automated procedure is generally able to construct native-like Ca models for
eight small B-protein structures. When the sheet topology was unknown but
disulfide connectivities were included, all sheet topologies were explored by the
combinatorial procedure. Using a simple geometric evaluation scheme, models
with the correct sheet topology were ranked first in four of the eight example
cases, second in three examples and third in one example. If neither the sheet
topology nor the disulfide connectivities were given a priori, all combinations of
sheet topologies and disulfides were explored by the combinatorial procedure.
The evaluation scheme ranked the correct topology within the top five folds for
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half the example cases.
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Conclusions: The combinatorial procedure is a useful technique for identifying
a limited number of low-resolution candidate folds for small, disulfide-rich,
B-protein structures. Better results are obtained, however, if correct disulfide
connectivities are known in advance. Combinatorial distance constraints can be
applied whenever there are a sufficiently small number of finite connectivities.

Introduction

The hierarchical approach towards predicting the tertiary
structure of a protein begins by predicting the local con-
formation (secondary structure) of segments of the poly-
peptide chain, followed by exploring suitable packings for
these segments held as rigid units. Until recently, tools for
predicting secondary structure have been insufficiently
accurate to sustain efforts to model tertiary structure.
Methods that predict protein secondary structure from
alignments of families of homologous protein sequences
[1,2], however, have recently been shown in bona fide pre-
diction sertings to provide an accuracy that should, at least
in principle, be able to sustain tertiary structure modeling
[3]. Thus, it is timely to explore methods to assemble a set
of predefined structural elements into a tertiary fold.

Computational methods for assembling tertiary structures
can be broadly classified as minimization-based, empirical
(distance geometry), or combinatoric [4]. Energy minimiza-
tion [5-9] and molecular dynamics [10,11] methods seek
to minimize a set of potential functions, corresponding to

observed physical and chemical effects, through direct
adjustments of conformational parameters or, in the latter
case, through trajectory calculations. Despite ever increas-
ing computational power, these methods are limited by
their complexity and difficulties in accurately modeling
the potential functions representing solvent.

Distance geometry algorithms [12-15] are best known in
association with proton NMR experiments. They generally
fix standard bond lengths and angles, thereby reducing the
number of independent variables to only the torsion angles.
Using the data obtained from an NMR experiment, a
protein conformation can be calculated from a set of dis-
tance constraints by minimizing a target function that is
zero if all distances are satisfied and increases monotoni-
cally as constrainits are violated. The reliability of the gener-
ated structures depends upon the quality and quantity of
the experimental data used as input [14]. More recently, the
distance geometry approach has been used in a variety of
methods for the folding of polypeptide chains into compact
globular structures. For example, Nishikawa and coworkers
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[16] introduced constraints from known secondary structure
and from potential residue contacts derived from the
number of residue neighbours within a 14 A radius of each
residue. Aszédi and Taylor [17,18] have used empirical dis-
tance constraints obtained by examining known crystal
structures. Likewise, Mumenthaler and Braun [19], have
developed an approach for packing helical structures by
self-correcting distance geometry. Although these methods
share much in common, such as constraints based on the
hydrophobic effect, they each add novel aspects to the
general approach, testifying to its versatility. Here, a furcher
new development is considered: the use of combinatorics.

Combinatoric methods were pioneered by Cohen and
coworkers [4,20,21]. These procedures generate the set of
all possible standard packings of secondary structure ele-
ments and remove from the set all structures that violate
stereochemical rules, leaving a small set of residual ‘topolo-
gies’ to be evaluated. Combinatorial heuristics have been
generated for o/at, B/B and o/ protein folds.

The approach presented here follows on from the previ-
ous work in that it uses a set of empirical distance con-
straints to collapse models of protein structure into a
compact form. It is different in that it couples a distance-
constraint minimization technique with a combinatoric
procedure to predict simple Cat models for small proteins
containing a few known strands in a single § sheet. The
method provides a unified description of loop and sec-
ondary structure regions, allows structural flexibility in the
pre-assigned secondary structure, and can directly incor-
porate distance-constraint information that can be derived
from multiple sequence alignments. It uses the regular
nature of hydrogen bonding in helices and B sheets, the
hydrophobicity and the general globular disposition of pro-
tein structures to generate empirical distance constraints,
which can be enhanced by assignments of active-site resi-
dues and disulfide-bond connectivities. In this work, such
constraints were determined for the class of small, disul-
fide rich, B proteins and were applied with a combinatorial
procedure to generate Co. model structures.

Methodology

Minimizing distance constraints

In the simple model used here, each amino acid residue is
represented by a single point corresponding to its Cot atom.
Thus, for a sequence of length », there are # points that
must be positioned in three dimensions to define a Co
model structure. If bond lengths and secondary structures
are idealized, some of the #(n—1)/2 pairwise distances
between points can be estimated to a high degree, particu-
larly if the secondary structure is known. Other distances,
for example between internal residues, can also be esti-
mated, but with a much larger uncertainty. The uncer-
tainty associated with each distance estimate can be
described by a variance. Using a complete set of pairwise

distance estimates, expressed in an # X # symmetric dis-
tance matrix D, and the related set of variances, expressed
in an # X # symmetric matrix V, it is possible to compute a
set of coordinates in # dimensions (4 < # — 1) for each point
by minimizing the following function:

n-1

L (E(x,x)-D,)"
53 Eoyby g

i=l j=i+1

where E(x,-,xj») is the Euclidean distance between points ¢
and /, where x; and x; are vectors in # dimensions. D, is the
empirically determined distance between points 7 and ;
and V; is the variance of the distance between points 7 and
7. For protein structures, a solution in three dimensions is
required. In practice, a better result is often obtained if a
solution is first found in a higher dimension and only then
embedded in three dimensions. In this work an initial
solution is generated in five dimensions before squeezing
the result into three dimensions.

Distance constraints

Given the mathematical model above, it remains for empiri-
cal distances and variances to be estimated for the input
data, consisting of the sequence string, residue three-state
accessibility assignments (internal, surface or ambivalent),
disulfide-bond connectivities, active-site residue assign-
ments, secondary structure assignments and sheet topology.
If only the first two input types are available any further
assignments can be omitted, resulting in a system that will
try to pack solely on the basis of hydrophobicity. Taylor
[22] recently showed, however, that using only hydropathic
information, a correct fold is unlikely.

In the present work, estimates for the distance constraints
(the contents of the matrices D and V) were applied hierar-
chically. The looser constraints (e.g. repulsive forces) were
applied first, whereas constraints that enforced tighter
restrictions (the relatively fixed distance between the Co
atoms of amino acids adjacent in the chain) were applied
later. Distance constraints are described below in the order
in which they are applied. All distances and variances used
are summarized in Table 1.

Repulsion

The distance and variance matrices were first initialized
with a general repulsion constraint to discourage points
from overlapping. A large distance of 20 A, corresponding
to the approximate average Co—Ca distance of globular
proteins of lengths of up to 60 amino acids, was used to fill
the matrix D. A very high variance of 120 A2, 5o that points
violating this restriction were not heavily penalized, was
used to fill the matrix V.

Surface and interior
An additional artificial point, corresponding to the center
of mass of the model, was created and used to define

Y
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Table 1

Table 2

A summary of the distances and variances used.

Protein statistics.

Constraint type  Distance (A) Variance Points applied to*

Repulsion 20.00 120.00 -
Exterior 12.50 15.00 {E—{centre of mass)

Interior 5.00 10.00 il-(centre of mass)
Active site 6.50 10.25 isite—/site
Next adjacent 5.20 0.30 i-(i+2)
7.00 0.50 i~(i+ 3)
Disulfide 56.50 0.20 icys—fcys
Sheet 4.54 0.10 icSx—jcSy
9.08 0.10 icSx—kcSz
Strand 6.74 0.08 iSx~(iSx + 2)
10.10 0.10 iSx—(/Sx + 3)
13.30 2.00 iSx—(iSx + 4)
Helix 3/10 5.26 0.09 i3x—(i3x + 2)
6.68 0.01 i3x=(i3x + 3)
Helix 5.48 0.02 iH—(H + 2)
5.20 0.02 iH-{H + 3)
6.28 0.07 iH-(H + 4)
8.75 0.07 iH={H + 5)
Adjacent 3.81 0.01 —(i+ 1)

*Centre of mass, pseudo point representing the centre of mass; /E, all
points assigned as surface; /, all points assigned as interior; /site, all
points assigned as active site; /Cys—/Cys, all pairs of disulfide bonds;
icSx, centre point of strand x; jcSy, centre point of strand directly
bonded to x; kcSz, centre point of strand directly bonded to y but is
not x; jSx, point in the strand x; /3x, point in the 3/10 helix x; /Hx, point
in the helix x; and /, all points.

constraints for points corresponding to residues assigned as
either surface or interior. Thus, the matrices D and V are
actually of dimension # + 1 by # + 1. This additional point is
used only in the calculations and is thereafter ignored. For
the set of proteins listed in Table 2, inspection of the exper-
imental structure shows that the average distance from the
center of mass to the Ca atoms of residues with a relative
surface accessibility of <33% i1s ~7.5%£5 A. Likewise, the
average distance from the center of mass of those residues
with a relative surface accessibility of >66% is ~12+5 A.
Consequently, similar values were used here for the dis-
tances and related variances between the center of mass of
the model and any residue assigned as surface or interior,
respectively. No constraints were applied to residues with
intermediate surface accessibility.

Active site

The residues forming the catalytic active site of a protein
may be dispersed along the one-dimensional sequence
string, but usually occur near in space in the tertiary fold.
To simulate this effect, all pairs of residues assigned as
participating in the active site were constrained to lie 6.5 A
apart. A relaxed variance of 10.25 A2 was selected to
enable some positional flexibility.

Next adjacent residues
Using standard bond lengths and bond angles, the dis-
tance between adjacent Ca atoms is fixed. The distance

Structure Protein R D H S Sheet Topology Resolution
BDS Anti-viral protein 43303 13 -11 NMR
23 -11
CBH Cellobiohydrolase, 36 2 0 3 1 3 -1 1 NMR
C-terminal domain 23 -11
CPA Carboxypeptidase 393 03 1 3 -1 1 25
inhibitor 23 -11
CRN Crambin 46332 1 2 -11 1.5
L8 Interleukin 8 72223 12 -11 NMR
23 -11
Oovo Ovomucoid 56313 12 -11 15
Third domain 13 -11
TGS Trypsinogen 56313 12 -11 1.8
inhibitor 13 -11
PTI Trypsin 58323 12 -11 1.0
inhibitor 13 -11

R, number of residues; D, number of disulfide bonds; H, number of
helices; and S, number of strands.

between Ca atoms separated by one residue depends
upon the torsion angles along the backbone chain, how-
ever. A distance of 5.2 A with a variance of 0.3 A2 was used
here to fill the second off diagonals in the matrices D and
V, respectively. The third off diagonals were set to a dis-
tance of 7.0 A with a variance of 0.5 A2, These values lie
between those found for equivalent residues in helical
(tightly coiled backbone chain) and strand (fully extended
backbone chain) conformations (T'able 1).

Disulfide bonds

Disulfide constraints were estimated by applving a dis-
tance of 5.5 A with a variance of 0.2 A2 between the pairs
of points representing the cysteine residues. In real
protein structures, although the covalent-bond length
between the sulfur atoms of the participating cysteines
has a small variance, the separation distance between the
respective Co atoms can range from 4 Aw7A.

Sheet

If a sheet topology is specified, then the adjacency and
relative orientation (parallel or antiparallel) of the con-
stituent strands are known. This provides a wealth of dis-
tance constraints. Here, this information is captured by
positioning the middle residues of adjacent strands at a
separation distance of 4.54 A apart with a small variance of
0.1 A2. This guarantees a large overlap of potentially
hydrogen-bonding residues, although the variance still
allows some slippage between the strands depending
upon the distance constraints of the system as a whole.
The remaining residues in the shorter of the strands were
then tethered to their expected hydrogen bonding partner
with the same distance and variance as the middle
residue. Furthermore, an additional constraint of 9.08 A
with a variance of 0.1 AZ, between the middle residue of
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each strand (¢) and the middle residue of a strand two
away (g + 2 or g—2 for edge strands and strands one in
from the edge; q = 2 for other strands), was introduced to
induce a more planar-type structure.

Strands and helices

If secondary structure information is available as input,
local structures can be generated by applying a small
number of constraints to consecutive positions within the
secondary structure unit. Given a strand, depending upon
its length, distance constraints were applied to each
residue pair within the strand, relating positions 7 to 7 + 2, /
to i+3, and 7 to / +4, as reported in Table 1. Similarly,
analogous constraints were applied to pairs of residues
occurring in regular o helices, with an additional constraint
applied between positions 7 to 7 + 5. With 3/10 helices, only
the pairwise distances 7 to 7+ 2 and 7 to 7/ + 3 were con-
strained (Table 1). For these constraints the variance
increases with the separation distance along the chain to
allow gentle curvature. The distances chosen generally
reflect idealized geometries for the helices and strands,
whereas the variances allow a small degree of flexibility.

Adjacent residue constraints

The most rigid constraint specifies the distance between
adjacent residues in the sequence, corresponding to the
first off diagonal in the matrices. Therefore, the distance
constraint between adjacent Ca points was applied last.
These distances were set to a value of 3.81 A with a very
small variance of 0.01 A2 to restrict the stretching or
compression of the virtual Co—Co bond.

Smoothing

Any two residues that are distant aleng the polypeptide
chain, but are near in space, force their immediate neigh-
bours along the chain also to be close in space. To reflect
this fact, a local smoothing was applied to the matrices,
where adjacent cells in the matrix were assigned the same
distance with an increment (+ 0.5 A) and a larger variance.
As implemented here, distances < 6.5 A with a variance of
< 0.5 A2 would induce smoothing to the neighbour matrix
cells, but only if the variance in that cell was > 10 A2 The
adjusted cells were set to have a new variance of 2.0 A2,

Sheet combinatorics

Sheet topologies are expressed here as a set of four tuples,
where each tuple consists of two strand indices, a binary rel-
ative orientation (1 for parallel and —1 for antiparallel) and a
sheet number, where each strand and sheet in the protein
has a unique index. Thus, for example, a protein consisting
of a single mixed sheet of three strands, where strands 1 and
2 are parallel and strands 2 and 3 antiparallel, would have a
sheet topology expressed by {(1,2,1,1) (2,3,-1,1)}.

This description is not able to specify a sheet conforma-
tion uniquely because it contains no information on the

precise hydrogen bonding partners between separate
strands. It also does not specify the handedness of the pairs
of strands (whether the second strand is bonded to the
right or to the left of the first strand after the first strand is
unambiguously oriented). Such a description is, however,
consistent with the inherent inability to determine the
handedness of a system from pure distance information.
Furthermore, this allows adjacent strands to position them-
selves as best as possible within the global context of all
the constraints imposed.

For any given sheet topology, an ensemble of model struc-
ture is possible. Depending on the restrictiveness of the
constraints, the actual number of models fulfiling the con-
straints can vary from two, the left-handed and right-
handed solutions for a completely defined system, to
infinity. Because a [ sheet is a tertiary structure, a large
number of restrictive constraints are available. Conse-
quently, a sample size of five independent models was
deemed sufficient to represent the ensemble. Larger
sample sizes (see below) did improve the results but only
marginally, not warranting the additional computation. If a
sheet topology is specified as part of the input, distance
constraints were applied directly to yield the five indepen-
dent models, otherwise, all possible combinations of sheet
topologies are determined, and five models were gener-
ated independently for each. Models were calculated in
parallel on several machines in a networked cluster.

A protein containing only a single sheet of N strands has
N!(2M-1)/2 possible sheet topologies, because the handed-
ness cannot be distinguished. Thus, combinations of up to
four strands in a single sheet can be run routinely.

Disulfide combinatorics

Disulfide bonds form valuable distance constraints, which
are particularly suited to the current methodology. It is
often easy to predict residues involved in disulfide bonds
by examining multiple sequence alignments, looking for
conserved cysteine residues. If there are more than two
conserved cysteine residues, however, it is generally not
obvious which of these are paired. Fortunately, it is rela-
tively straightforward to determine these connectivities
experimentally. If experimental information is not avail-
able, it is still possible to make use of these potential dis-
tance constraints by trying all possible combinations of
disulfide connectivities with the distance constraint proce-
dure. There are [N=1]1/[2I(N=2421[(N=2)/2]!] possible disul-
fide connectivities between N cysteine residues, if N is
even. Combinations of these disulfide connectivities are
tried here in conjunction with all combinations of sheet
topologies, leading to a large pool of potential structures.

Model evaluation
To evaluate a sample solution, a simple evaluation func-
tion (E) based on geometric properties of the models was
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used. The function consists of a van der Waals overlap

term (E ) and a hydrogen bonding term (E,). The model

for which E is the minimum is presumed to be the best.
The function is given by:

fwifE,>04
E —{Eh otherwise @

Models involving a large value for E_ become difficult to
evaluate because they will often have very favourable E,
values, but nonetheless vield incorrect solutions that are
physically unrealistic. Consequently, any model where
E, > 0.4 is immediately discarded. Most native folds have
E. =0, although for BDS it is as high as 0.2.

The van der Waals term is given by the sum of the inverse
of the squared distances of all pairs of atoms 7 that overlap;
that is, for which the distance between their centres is less
than the sum of their van der Waals radii. For the N Ca
atoms in each sequence, C , is taken to be 2 A. Thus:

E.= 2 szW// (3)

i=1 J

N-1 N
i=1 j=i+1

where

]/d,'"’ )
vdw.. =1 ¥ \ 4
4 {0 lf d,j > 2 avdw ( )

and
d; = [(x;=x)* + (y; = y)? + (z,~ 2] (5)

The hydrogen bonding term 1s given by the normalised
sum of the distances between a residue in a strand and the
nearest residue in an adjacent strand, for all resides in each
pair of strands. Thus:

Q b d
Ey= Y [1/(1+(b-a)Y Y min(d,)] 6)

f=1 r=a s=c

where the sum is over all Q unique pairs of adjacent
strands 7,5 with residue extents ato b and c to d.

An additional solvent accessibility term (E,) was also con-
sidered, where E, is a simple step function that assigns a
score for each residue depending upon its accessibility
state (internal or surface) and the number of neighbouring
residues it has at a distance of <12 A. Thus, a residue
assigned to the interior with > 20 neighbours increments
the score by 3; with > 14 neighbours but < 20 neighbours
by 1; and with < 15 neighbours by -1. A residue assigned
to the surface with < 20 neighbours increments the score
by 3; with < 26 neighbours but > 20 neighbours by 1; and
with > 25 neighbours by —1. These values were selected
based on a plot of accessibility versus number of neigh-
bours for the examples shown in Table 2. This term was
dropped, however, because the values obtained from the
models were not sufficiently discriminatory.

Equipment

Programs were implemented in the programming lan-
guages C [23] and DARWIN (G.H. Gonnet, unpublished
software) and incorporated as part of the DARWIN package.
Calculation of the models was performed in parallel over a
network of workstations using the DARWIN Parexec feature
(L.K. and G.H.G., unpublished software).

Dataset

The Brookhaven databank [24] contains a number of
small, disulfide-rich proteins containing a single B sheet. A
total of eight structures (Table 2) involving four distinct
sheet topologies were used to test the method presented
in this work. The sequence, secondary structure assign-
ments, disulfide connectivities and surface accessibilities
were obtained from the output of the DSSP program [25]
using default parameterization. Isolated hydrogen bonded
residues (assigned as B by DssP) were also taken as strand
assignments. Furthermore, only strands involving hydro-
gen bonds to the same subunit were considered. No active-
site assignments were used in this work. Surface and
interior assignments were derived from the DSSP accessibil-
ity values for the known rtertiary structures and taken by
choosing an accessible surface cutoff of <33% accessible
for interior residues and >66% accessible for surface
residues. Accessible surface normalization was performed
by dividing the DSSP value by the values reported by Zie-
lenkiewicz and Saenger [26] for Gly—X-Gly tripeptides in
an extended form. In a more general application of the
algorithm, these values could be derived from multple
alignments [27].

Results

Constraint minimization

To test the distance-constraint minimization, the method
was applied to each of the folds in Table 2, using knowl-
edge of the correct sheet topology, secondary structure
assignments, disulfide bonds and approximate surface
accessibility. A typical input file for the procedure is indi-
cated in Figure 1. For each structure, 10 models were built
by repeated application of the procedure using random
initial positions for each run. The models were then scored
with the evaluation function and ranked. The top scoring
model for each structure was then superimposed on the
native fold by minimizing the root mean squared deviation
(rmsd) between the equivalent strand residues. The super-
positions are illustrated in Figures 2 and 3, and are grouped
according to folds that are essentially correct and folds that
are mostly correct but involve some incorrect placements
of some structural elements, often the termini. Only three
of the eight structures fall into the category with folds that
are mostly correct.

The folds that show an overall chain trace very similar
to the native fold include all the structures with the
shortest sequence lengths: BDS (anti-viral protein), CBH
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Figure 1

lcbh
SEQ
TQSHYGQCGGIGYSGPTVCASGTTCQVLNPYYSQCL
I/S
SIMMMIIITIMSISMMMMIISSIMMMSMMMSIIIIM
Helix
ThreeTen
Strand

7 9

25 29

30 35
Disulfide

8 25

19 35
ActiveSite
Sheet
1 3 -1 1
2 3 -1 1 Folding & Design

An example input file for CBH {cellobiohydrolase I, C-terminal domain)
for the distance constraint procedure. The file indicates the amino acid
sequence, the approximate surface accessibility (I, internal; S, surface;
M, ambivalent), secondary structure residue extents, disulfide
connections and sheet topology (strand identifier 1; strand identifier 2;
1, parallel or -1, antiparallel; sheet identifier). There are no helical or
active-site residues described.

(cellobiohydrolase I, C-terminal domain), CPA (car-
boxypeptidase inhibitor) and CRN (crambin). OVO (ovo-
mucoid) is longer, however. BDS, CBH and CPA have the
same sheet topology involving a three-stranded antiparallel
sheet with strand 3 in the middle. The topology of CRN is
distinctly different, containing only a single pair of antipar-
allel strands in addition to some helical structures. Like-
wise, the topology of OVO is also distinct and contains a
helix and a three-stranded antiparallel sheet, with strand 1
being the central strand. The model of CRN highlights a
limitation of the current methodology. Although the back-
bone traces a similar path through space to that of the
native fold, one of the helices has a left-handed (and there-
fore incorrect) chirality. A similar situation is found in the
OVO helix. The models for BDS, CBH and CPA, on the
other hand, represent well the general native fold, as is
seen in Figure 2. Nevertheless, the models are still too
crude for an overall rmsd value to be truly meaningful
(~8 A average rmsd).

Knowledge of the correct sheet topology and location of
the disulfide bonds is sufficient to restrict the best model
for IL8 to be close to that of the native fold, as illustrated
in Figure 3. The exact orientation of the structural seg-
ments and terminal regions, however, show considerable
flexibility in the Ca description used here. The model for
IL8 shows a different positioning of the C-terminal helix
and the N-terminal extension. In the native fold the
C-terminal helix lies across one face of the § sheet, per-
pendicular to the strand direction, whereas in the model
structure it occurs on the other face of the sheet. Using

only Co atoms, hydrophobic packing of the helix to the
correct face of the sheet was not possible. The general
shape of the IL.8 model is also more globular than that of
the native fold, as is emphasized by the folding back of
the hairpin formed by strands 1 and 2. This phenomenon
arises from the parameterization of the distance and vari-
ance constraints, which are biased towards the smaller
structures that form the majority of the data set. Figure 3
also shows the best scoring models for TGS (trypsinogen
inhibitor) and PTT (trypsin inhibitor) superimposed on
their respective native folds. Although not obvious from
the figure, the core of TGS is essentially correct. The
N terminus (residues 1-11), however, packs to the wrong
side of the model whereas the helix packs with a different
orientation to the sheet. Surprisingly, TGS and OVO have
very similar structure, but they differ in sequence (~33%
identity), solvent-accessibility assignments and secondary
structure definitions. These changes clearly influence the
correctness of the predicted models. For PTI, strands 1
and 2 form a reasonable hairpin in the core of the model.
As with TGS, however, the N and C termini pack to the
wrong side of the model. Strand 3, which consists of only
one residue, 1s also not well placed. Models with longer
strand definitions tend to vield better results.

Sheet combinatorics

The results from the previous section indicate that when
given the correct sheet topology and disulfides, native-like
chain traces are generally induced by the method. Specify-
ing the correct sheet topology, however, enforces consi-
derable constraints on the protein models. Furthermore,
this information is not usually obtainable from sequence
information. The same applies to disulfide connectivities.
To generalize the method such that models can be
obtained from quantities that may be predicted from multi-
ple sequence alignments, a combinatorial approach was
adopted, whereby all possible sheet topologies were used
as input to the procedure, assuming that the correct sec-
ondary structure extents and, for the meantime, the correct
disulfide bonding have been predicted.

Seven of the cight structures investigated have sheets
consisting of three strands, thereby allowing 12 possible
sheet topologies. CRN, with only two strands, gives rise to
only two possible topologies. For each sheet topology, five
models were generated resulting in a total of 60 model
structures for each protein in Table 2, except CRN for
which there are only 10 models. For each protein, the
model structures were then ranked by the evaluation
scheme. Table 3 summarizes the results. In four out of
eight cases, models with the correct sheet topology scored
the highest, three were ranked second and one third. The
quality of the correct models, generated here from only
five random starting configurations, is generally as good as
the models generated from 10 starting configurations as
performed in the constraint minimization section above,
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Stereo diagrams of model folds for (a) BDS
(anti-viral protein), (b} CBH (cellobiohydro-
lase |, C-terminal domain), (¢} CRN {crambin),
(d) CPA (carboxypeptidase inhibitor) and

(e) OVO (ovomucoid, third domain)
superimposed on the native structure (bold)
using the residues in the [ sheet.

(a)

(b)

()

(d)

(e)

Folding & Design
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Figure 3

(b)

©

Stereo diagrams of models for (a) IL8
(interleukin 8), (b) TGS (trypsinogen inhibitor)
and (¢) PTI (trypsin inhibitor) superimposed
on the native structure (bold) using the
residues in the P sheet.

Folding & Design

although with more trials, closer approximations to the
native fold do usually result.

Table 3 indicates the number of trial sheet topologies
used in generating the models. Also listed are the
number of intuitive sheet topologies, generated by
applying a loop length and disulfide connectivity filter.
Strands separated by very short loops (< 4 residues) indi-
cate that the strands will be antiparallel if they occur in
the same sheet (providing that the loop is indeed a loop
and not a bulge and the strand lengths flanking the loop
are longer than the loop itself). There is, however, no
guarantee that such strands will necessarily be directly
hydrogen bonded together if the loop is longer than one
residue, because it is possible for another strand to inter-
vene [28]. Disulfide connectivities, where the cysteine
residues are in or are at least no more than two residues
away from two strands, indicate that the strands are adja-
cent in the sheet, although the orientation might not be
able to be deduced. For example, in CBH (Figure 1), the

two-residue loop between strands 2 and 3 make these
strands antiparallel, but not necessarily adjacent [28],
reducing the maximum number of folds to six: [1 2 (1),

23D 2ED),23EDE21),13ED) (21 (-1,

Table 3

Prediction rankings.

Maximum Number of
Structure Rank number of folds™ intuitive folds*
BDS 2 12 6
CBH 1 12 4
CPA 1 12 4
CRN 2 2 1
L8 2 12 6
ovo 1 12 12
TGS 1 12 12
PTI 3 12 6

*Computed by N! 2N-1/2. N, number of strands. *As determined by
loop length and disulfide bonding as described in the text.
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Table 4

Combinatoric disulfide prediction rankings.

Maximum
Structure Rank number of folds*
BDS 60 180
CBH 2 36
CPA 22 180
CRN 16 30
IL8 4 36
Oovo 5 180
TGS 21 180
PTI 5 180

*Computed by [n! 20-1/2] [(N-1){/[2(N-2/2] [(N-2)/2]1], where n is the
numbers of strands and N is the number of cysteine residues.

13 M [23-1),31 (D] and [23(=1),31(-D]. The
fact that strands 1 and 3 are linked by a disulfide rules
out the topologies [1 2 (1), 23 (-1)] and [1 2 (-1), 2 3
(-1)], but is not able to define a relative orientation of
the strands. Thus, four topologies are intuitively likely.
Such filters are used by Cohen er @/. [21] to reduce the
number of combinatorics. Taken together the results
indicate that the prediction potential of the method is
not as strong as the first impression because, in some
cases, up to 66% of the sheet topologies could be dis-
carded by applying the filters. Surprisingly, the evalua-
tion scheme failed to select the correct sheet topology for
CRN when all sheet combinations were explored, even
though the intuitive filters could. Examination of the
selected model shows that the sheet is not well formed,
with an inter-strand twist angle of ~90°, so it is difficult
to decide if the strands are parallel or antiparallel. This
stems from the very short nature of the strand defini-
tions. Overall, however, the method performs well and is
able to select a native-like fold in almost all cases.

Figure 4

Sheet and disulfide combinatorics

A more difficult test for the procedure is when all sheet
topologies are explored without the benefit of using correct
disulfide pairings. Although disulfide connectivities can
usually be obtained by experiment, they are not easy to
predict from sequence alignments alone. Thus, the combi-
natorial procedure was run again, this time using all combi-
nations of sheet topology and all possible combinations of
disulfide pairings as constraints. The results are indicated
in Table 4. The table shows that for half the example
cases, the correct fold ranked amongst the top five fold
types. The correct fold was never ranked first, however.
This suggests that folds with the same secondary structure
extents but different disulfide connectivities are viable, if
they have a different topology. This is akin to the virus
capsid jellyroll folds and the immunoglobulin family
having similar secondary structural extents but being
‘wired’ differently. For example, Figure 4 shows a novel
but plausible fold for OVO, which has disulfide bonds
8-16, 24-38 and 35-56 and has strands 1 and 3 parallel in
contrast to the native fold, which has disulfide bonds 8-38,
16-35 and 24-56 and a fully antiparallel sheet. Although
this opens interesting possibilities for protein engineering,
exploring combinations of disulfide pairings does not
appear generally useful at the low resolution of the models
considered here. Higher resolution models, in which the
geometry of the disulfide bond is considered, may benefit
from such an approach, however.

Discussion

The method presented here addresses the problem of
packing known secondary structure elements into glob-
ular and compact native folds. Tavlor and Aszédi
[17,18,22] have already shown that in the use of distance
geometry techniques, if the distances are derived empiri-
cally to reflect the hydrophobic effect, the resulting
distance matrix is generally underdetermined and the

Stereo diagrams of a putative novel fold that
involves the same strand extents and cysteine
residues as OVO. Strands are highlighted in
bold and disulfide bonds by dashes.
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hydrophobicity packing measure, in this context, is alone
insufficient to determine a correct tertiary fold from its
native sequence. Nevertheless, such a technique has many
useful properties, including the immediate incorporation of
any experimentally determined distance constraints, the
ability to compute solutions in a multidimensional space
(thereby freely passing through high-energy barriers or
protein knots brought about by the initial random place-
ment of points) and the ability to assign a variance or soft-
ening parameter to the distance constraints. This general
approach has been used previously for the placement of
nodes in the drawing of tree structures (G.H. Gonnet,
unpublished software). The current procedure extends
from previous approaches in several novel ways.

The most significant extension is the introduction of a com-
binatorial procedure akin to that proposed by Cohen and
coworkers [4,20,21]. Any particular combinatoric of a [§ struc-
ture enforces a large number of long-range distance con-
straints, thereby complimenting a distance geometry
technique. In the original combinatoric approach, candidate
structures were selected from the pool of all possible
packing combinations based on filters involving loop length
and the packing of hydrophobic faces. Loops connecting
packed secondary structure units were added at a later stage.
The current procedure offers a unified approach to generate
a hydrophobic core, construct loop regions (which can now
also be included in the designation of the core) and intro-
duce experimental distance constraints. A drawback of the
current method is the computational time required to gen-
erate the set of candidate model structures. This is offset,
however, by the further advantage that the precise orienta-
tion of packing units is no longer rigidly fixed and some
flexibility (given by the variances) is permitted to the struc-
ture to position its constituents in a globally optimal sense.

A second extension makes use of the fact that if any pair
of residues are separated by a fixed distance, then their
immediate neighbours must also be separated by a similar
distance, through chain connectivity. This is most advan-
tageous for long-range distance constraints. Such informa-
tion may be deduced from multiple alignments (the
conservation of functional residues is often indicative of
them being localized in an active-site region) or from
experiment (disulfide bonds or other residue interactions).
More recently, covariation has been explored as a tool for
deducing distance constraints {29-36]. In the current pro-
cedure, a smoothing process is introduced, so that any pair
of residues separated by a well-defined distance constraint
can propagate distance information to adjacent residues.
Smoothed distance matrices tend to converge faster
because the system as a whole is more constrained,
thereby enhancing the usefulness of the approach.

A consequence of the combinatorial procedure is that
several families of model solutions are generated: one

family for each sheet topology attempted. This necessi-
tates a method for differentiating between the models
and selecting the solution that displays the most protein-
like characteristics. Several methods have been devel-
oped for this purpose [37-39]. These methods, however,
work best with a more detailed description of the struc-
tures than the Co models presented here. Taylor [22] cir-
cumvents this problem by constructing backbone and
sidechain coordinates from the Ca coordinates. To avoid
this added complexity, a different approach was devel-
oped here that relies only upon the Co coordinates. The
method evaluates candidate folds based upon how well
they pack in a hydrophobic core while avoiding atomic
overlap, as well as considering idealized hydrogen bond-
ing. Despite the simplicity of the evaluation scheme, it
performs reasonably well, correctly identifying six out of
eight native folds as the best scoring and scoring second
in the two remaining cases. When the same structures
were evaluated by summing over pairwise potentials of
mean force [40], a similar level of success was achieved,
with the procedure selecting native-like but not native
folds for IL8, PTT and TGS. When applied to the combi-
natoric set of model structures, however, the prediction
accuracy using pairwise potentials was dramatically
reduced, correctly finding a native-like model for only
CRN and CPA. This is intuitive for two reasons: the size
of the structures and the atomic overlap generated by
incorrect sheet topologies. Sippl and coworkers [38,40]
show that their method works best on larger protein struc-
tures and less well for structures smaller than ~60 resi-
dues, the typical size used in this work. Furthermore,
steric considerations are not considered and as a conse-
quence the Sippl potentials usually select folds that give
rise to a low energy simply because they present a dense
hydrophobic core, unfortunately involving far too many
atomic overlaps to be protein like. Thus, given the rudi-
mentary nature of the Co models produced, the evalua-
tion scheme presented here is a fast and efficient method
for selecting good model candidates.

Clearly, the level of success of the method is governed by
the quality of the input constraints. For example, an incor-
rect set of secondary structures, predicted from an align-
ment, will generate an incorrect fold. If, however, the
secondary structures are essentially correct and err only in
the extents of the elements, realistic folds can be achieved.
In fact, increasing the length of the DSSP secondary struc-
ture definitions by one residue each side resulted in better
quality predictions. This was particularly noteworthy in
example cases that included a strand consisting of only a
single residue. The additional residues help by defining
the direction of the strand but can also shorten loop
lengths, possibly precluding some sheet topologies. Thus,
care must be exercised in deciding when to extend the
lengths of structural elements. For long strands the method
is quite robust with respect to variations in strand length
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and even shifts of one or two residues, providing that the
loops are not unduly shortened.

The potential of this method has been demonstrated, but
the current implementation still suffers from a number of
limitations. At present, there is no facility to accommodate
models for proteins with more than ~70 residues because
the method has been parameterized for small proteins.
Further work is required to establish a useful function
relating the length of the amino acid sequence to the
matrix parameterization. Taylor [22] has made some prog-
ress in this area. A related issue is the number of expected
surface and interior residues. No checks are made at
present to consider if a sufficient number of internal and
surface assignments have been made. The importance of
this is exemplified by a comparison of the models produced
for TGS and OVO (see above). It must also be pointed out
that in the current implementation, combinatoric sheet
structures are arrived at by aligning the centers of adjacent
strands, guaranteeing maximal hydrogen bonding between
the strands. Thus, although there is some freedom for
strand slippage, not all explicit hydrogen bonding topolo-
gies are explored. Usually, this simplification is acceptable,
but B sheets are complicated tertiary structures and the
bonding of a very short strand to a very long strand could
disrupt the procedure. Finally, the issue of chirality must
be considered. It is trivial to interconvert between a struc-
ture and its mirror image, but difficulty arises in resolving
folds consisting of some left-handed segments and some
right-handed segments. In the current method, no effort
was made to distinguish between left-handed and right-
handed substructures. Instead, emphasis was placed on the
overall chain trace and evaluating the usefulness of the
combinatorial procedure. Usually the hydrophobic con-
straints are able to guide the fold into a native-like struc-
ture (Figures 2 and 3). Methods for enforcing the correct
handedness have been discussed and generally involve
introducing the calculation of a triple scalar product for the
vectors connecting three consecutive Cat atoms [41].

Other approaches are emerging for packing secondary
structures elements into tertiary folds. A Monte Carlo
method has been developed [42], which, when given the
secondary structure and a small number of long-range
distance constraints, produces folded structures. The
method was applied to hemerythrin, flavodoxin, bovine
pancreatic trypsin inhibitor and an immunoglobulin
domain and the resulting models were shown to have an
rmsd of 3-5 A for the backbone coordinates. Although
this is particularly encouraging, it is important to note that
the quality of the models depends heavily on the choice
of distance constraints, as does the method presented
here. A set of nine non-redundant Ca~Ca distance con-
straints were used to generate a structure for PT1 with the
Monte Carlo method. In the current approach, only three
explicit distance constraints were used (corresponding to

experimentally determined disulfide bonds) to generate
the model depicted in Figure 3. The remaining constraints
were all derived using the empirical formulations described
in the Methods section. Using another recent distance
geometry method [43] the authors found that an approxi-
mate structure (rmsd ~4 A) required at least one additional
distance constraint for each amino acid in the protein.

Dandekar and Argos [44] have used the Genetic Algo-
rithm to fold the mainchain of several small proteins using
only predicted secondary structures. In this approach,
mainchain dihedrals were fixed to a small set of possibili-
ties. Populations of strings representing the backbone
dihedrals are allowed to vary by means of mutations in and
between the strings, guided by a specific fitness criteria
that selects the fittest individual as the solution on termi-
nation of the algorithm. Although not directly comparable
to the current methodology, the Genetic Algorithm
approach is complementary in the sense that the fitness
function incorporates some of the empirical constraints
used here, particularly the hydrophobic interactions.

Recently, an algorithm to generate low-resolution protein
tertiary structures from known secondary structure was
described [45]. The algorithm uses a simplified represen-
tation of the polypeptide chain and a potential based on
hydrophobicity. Low-resolution structures were gener-
ated for two four-helix bundle proteins, but no other
topologies were explored. Again, this emphasizes the
importance of hydrophobicity.

Acknowledgements

The authors wish te thank Martina Chelvanayagam for assistance with prepa-
ration of the manuscript. This work was supported by the Swiss National
Science Foundation. G.C. is the recipient of an Australian Research Council
Postdoctoral Fellowship.

References
Benner, S.A., Badcoe, |, Cohen, M.A. & Gerloff, L.D. (1993). Bona
fide pred|ct|on of aspects of protein conformation. Assigning interior
and surface residues from patterns of variation and conservation in
homologous protein sequences. J. Mol Biol. 235, 926-958.

2. Rost, B. & Sander, C. (1993). Prediction of protein secondary
structure at better than 70% accuracy. J. Mol. Biol. 232, 584-599.

3. Thornton, JM., Flores, T.P., Jones, D.T. & Swindells, M.B. (1992).
Protein structure. Prediction of progress at last. Nature 354, 105-106.

4. Cohen, F.E., Sternberg, M.J.E. & Taylor, W.R. (1982). Analysis and
prediction of the packing of a helices against a B sheet in the tertiary
structure of globular proteins. J. Mol. Biol. 156, 821-826.

5. Levitt, M. & Warshel, A. (1975). A computer simulation of protein
folding. Nature 253, 694-698.

6. Burgess, AW. & Scheraga, H.A. (1875). Assessment of some
problems associated with preductlon of the three-dimensional
structure of a protein from its amino-acid sequence. Proc. Nat/ Acad.
Sci. USA 72, 1221-1225.

7. Hagler, AT. & Honig, B. (1978). On the formation of protein tertiary
structure on a computer. Proc. Nat/ Acad. Sci. USA 75, 554-558.

8. Abagyan, RA. (1993). Towards protein folding by global energy
optimization. FEBS Leit. 325, 17-22.

9. Skolnick, J., Kolinski, A., Brooks, C.LIlIl, Godzik, A. & Rey, A. (1993). A
method for predicting protein structure from sequence. Curr. Biol. 3,
414-422.

10. van Gunsteren, W.F. & Berendsen, H.J.C. (1987). Groningen
Molecular Simulation (GROMOS) Library Manual. pp. 1-229, Biomos
B.V., Groningen, Germany.




it A e i

160 Folding & Design Vol 3 No 3

17.

18.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

Karplus, M. & McCammon, J.A. (1983). Dynamics of proteins:
elements and function. Annu. Rev. Biochem. 52, 263-300.

Crippen, G.M. (1978). Rapid calculation of coordinates from distance
matrices. J. Comput. Phys. 26, 449-4592,

Braun, W., Bésch, C., Brown, LR, Go, N. & Waithrich, K. {1981).
Combined use of proton-proton Overhauser enhancements and a
distance geometry algorithm for determination of polypeptide
conformations. Application to micelle-bound glucagon. Biochim.
Biophys. Acta 667, 377-396.

Havel, T., Kuntz, I.D. & Crippen, G.M. (1983). Theory and practice of
distance geometry. Bull. Math. Biol. 45, 665-720.

Havel, T. & Wiithrich, K. (1984). A distance geometry program for
determining the structures of small proteins and other macromolecu-
les from nuclear magnetic resonance measurements of intramolecular
"H-"H proximities in solution. Bull, Math. Biol. 46, 673-698.

Saito, S., Nakai, T. & Nishikawa, K. (1993). A geometrical constraint
approach for reproducing the native backbone conformation of a
protein. Proteins 15, 191-204.

Aszodi, A. & Taylor, W.R. (1994). Secondary structure formation in
model palypeptide chains. Protein Eng. 7, 633-644.

Aszodi, A. & Taylor, W.R. (1994). Folding polypeptide o carbon
backbones by distance geometry methods. Biopolymers 34, 489-505.
Mumenthaler, C. & Braun, W. (1995). Predicting the helix packing of
globular proteins by self-correcting distance geometry. Protein Sci. 4,
863-871.

Cohen, F.E., Richmond, T.J. & Richards, F.M. (1979). Protein folding:
evaluation of some simple rules for the folding of helices into tertiary
structures with myoglobin as an example. J. Mol. Biol, 132, 275-288.
Cohen, F.E., Sternberg, MJE. & Taylor, W.R. (1980). Analysis and
prediction of protein beta-sheet structures by a combinatorial
approach. Nature 285, 378-382.

Taylor, W.R. (1993). Protein folding refinement: building models from
idealized folds using motif constraints and multiple sequence data.
Protein Eng. 6, 593-604.

Kernighan, B.W. & Ritchie, D.M. (1978). The C programming
fanguage. Prentice-Hall Inc., Englewaod Cliffs, NJ, USA.

Bernstein, F.C., et al, & Tansumi, M. (1977). The protein data bank: a
computer based archive file for macromolecular structures. J. Mol.
Biol. 112, 535-542,

Kabsch, W. & Sander, C. (1983). Dictionary of protein secondary
structure. Pattern recognition of hydrogen bonded and geometrical
features. Biopolymers 22, 2577-2637.

Zielenkiewicz, P. & Saenger, W. {(1992). Residue solvent
accessibilities in the unfolded polypeptide chain. Biophys. J. 63,
1483-1486.

Benner, S.A. & Gerloff, D. (1990). Patterns of divergence in
homologous proteins as indicators of secondary and tertiary structure:
a prediction of the structure of the catalytic domain of protein kinase.
Adv. Enzyme Regul. 31, 121-181,

Hutchinson, E.G. & Thornton, J.M. {1993). The Greek key motif:
extraction, classification and analysis. Protein Eng. 6, 233-245.
Altschuh, D., Lesk, AM., Bloomer, A.C. & Kiug, A. (1987). Correlation
of coordinated amino acid substitutions with function in
Tobamoviruses. Protein Eng. 1, 228-236.

Altschuh, D., Lesk, A.M., Bloomer A.C. & Klug, A. (1987). Correlation
of coordinated amino acid substitutions with function in viruses related
to Tobacco mosaic-virus. J. Mol. Biol. 193, 693-707.

Altschuh, D., Vernet, T., Moras, D. & Najai, K. (1988). Coordinated
amino-acid changes in homologous protein families. Protein Eng. 2,
193-199.

Taylor, W.R. & Hatrick, K. (1994). Compensating changes in protein
multiple sequence alignments. Protein Eng. 7, 341-348,

Shindyalov, IN. Kolchanov, N.A. & Sander, C. (1994). Can three-
dimensional contacts in protein structures be predicted by analysis of
correlated mutations? Protein Eng. 7, 349-358,

Gobel, U., Sander, C., Schneider, R. & Valencia, A. (1994). Correlated
mutations and residue contacts in proteins. Proteins 18, 309-317.
Neher, E. (1994). How frequent are correlated changes in families of
protein sequences? Proc. Nat! Acad. Sci. USA 91, 98-109.
Chelvanayagam, G., Eggenschwiler, A, Knecht, L., Gonnet, G.H. &
Benner, S.A. (1997). An analysis of simultaneous variation in protein
structures. Protein Eng. 10, 307-316.

Chiche, L., Gregoret, LM., Cohen, F.E. & Kollman, P.A. (1990).
Protein model structure evaluation using the solvation free energy of
folding. Proc. Nat! Acad. Sci, USA 87, 3240-3243.

Hendlich, M., et al,, & Sippl, M.J. (1990). Identification of native protein
folds amongst a large number of incorrect models. The calculation of
low energy conformations from potentials of mean force. J. Mol. Biol.
216, 167-180.

39.

40.

41.

42,

43.

44,

45.

Ldthy, R., Bowie, J.U. & Eisenberg, D. {(1992). Assessment of protein
models with three-dimensional profiles. Nature 356, 83-85.

Sippl, M.J. (1990). Calculation of conformational ensembles from
potentials of mean force. An approach to the knowledge-based
prediction of local structures in globular proteins. J. Mol. Biol. 213,
859-883.

Crippen, G.M. & Havel, T. (1988). Distance geometry and molecular
conformation. Wiley, New York.

Smith-Brown, M.J., Kominos, D. & Levy, RM. (1993). Global folding of
proteins using a limited number of distance constraints. Protein Eng.
6, 605-614.

Lund, O., Hansen, J., Brunak, S. & Bohr, J. (1996). Relationship
between protein structure and geometrical constraints. Protein Sci 5,
2217-2225.

Dandekar, T. & Argos, P. (1994). Folding the main chain of small
proteins with the genetic algorithm. /. Mol. Biol. 236, 844-861.
Monge, A., Friesner, RA. & Honig, B. (1994). An algorithm to generate
low-resolution protein tertiary structures from knowledge of secondary
structure. Proc. Nat/ Acad. Sci, USA 91, 5027-5029,

Because Folding & Design operates a ‘Continuous Publication
System’ for Research Papers, this paper has been published
on the internet before being printed. The paper can be
accessed from http://biomednet.com/cbiology/fad - for
further information, see the explanation on the contents pages.




