PREDICTION REPORT

A Prediction of the Secondary Structure of the Pleckstrin Homology Domain

Thomas F. Jenny and Steven A. Benner

Department of Chemistry, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland

ABSTRACT A consensus prediction for the secondary structure of the pleckstrin homology (PH) domain is presented. The prediction is based on an analysis of patterns of conservation and variation of homologous protein sequences. The structure is predicted to be formed largely from beta strands with a single alpha helix. © 1994 Wiley-Liss, Inc.

Key words: protein secondary structure prediction, pleckstrin homology domain

Efforts to predict secondary structure in proteins have recently come to include methods that use as input a multiple alignment of homologous protein sequences.^{1,2} Particularly effective have been tools that extract conformational information from patterns of conservation and variation within these alignments.³⁻⁵ Five bona fide predictions made using these tools can now be evaluated using one or more subsequently determined experimental structures.⁶

Many predictions made with these tools focused on proteins and domains involved in signal transduction, including the src homology 1 (SH1) domain, a protein kinase,⁷ the src homology 2 (SH2) domain,⁸ a unit that binds peptides containing phosphotyrosine, and the src homology 3 (SH3) domain,^{9,10} a unit that presumably binds to prolinerich peptide sequences. The recently identified pleckstrin homology (PH) domain may also be involved in similar type interactions in signal transduction.^{11,12} As an experimental structure may be imminent, we present here a predicted consensus model for the secondary structure of this protein family.

Sequences of pleckstrin homology domains were extracted from entries in SwissProt 27 and a multiple alignment built by DARWIN.¹³ The multiple alignment was then adjusted by hand (Fig. 1) in light of a multiple alignment of Musacchio et al.¹⁴ Additional sequences present in the multiple alignment from Musacchio et al. but not listed in SwissProt 27 were not incorporated. Surface and in-

© 1994 WILEY-LISS, INC.

terior residues were assigned by an automated procedure similar to that described elsewhere.¹⁵ The multiple alignment was then parsed using procedures described elsewhere,^{7,16} and elements of secondary structure were predicted within the parsed segments from patterns of conservation and variation, as described elsewhere.⁷ Many of the automated routines are available on a server via electronic mail at the address cbrg@inf.ethz.ch.

The prediction is shown in Figure 1. In addition to serving as a documentation of a prediction in advance of the appearance of an experimental structure, this prediction contributes to the discussion of methodology in three ways. First, testing of the heuristics that parse the alignment based on strings of consecutive Pro, Gly, Asp, Asn, and Ser heuristic is more advanced in this prediction than in any previous prediction.¹⁶ Second, the prediction was made independently of that of Musacchio et al.¹⁴ Nevertheless, it corresponds well to their prediction. As Musacchio et al.¹⁴ use an approach that resembles the part of the ETH method that focuses on periodicity in patterns of variation and conservation of amino acids,³ this correspondence is not surprising. It does, however, illustrate the transferrability of the method and the reproducibility of its predictions, topics that have been the source of some discussion in the recent literature.¹⁷

Finally, one feature of the pleckstrin homology domain family that separates it from other families of proteins for which predictions have been recently been published (for example, the hemorrhagic metalloprotease family)¹⁶ is its enormous sequence divergence. The PH domain family has an overall divergence greater than 250 PAM units, while the hemorrhagic metalloprotease family had diverged by only ca. 75 PAM units. The large sequence diver-

Received April 14, 1994; revision accepted May 24, 1994 Address reprint requests to Dr. Steven A. Benner, Laboratorium für Organische Chemie, E.T.H. Zentrum, CH-8092 Zurich, Switzerland.

T.F. JENNY AND S.A. BENNER

Alignment			n Homology D	omains	Predicted	69 70	5.01 I P 0.76 S P	TT D	IPAY I NPPL N	III LL PHD PS	IW Y V SK F N	strand (weak) strand (weak)
Position			Sequences		Secondary Structure	71	5.47 I		LLLL L	LLL LV	LMML	strand (weak)
Number	Parse Prediction	lk m baa	d j abc pf	eoin	Structure	72	0.95 S	EE P	ANNE A	KRS DD	IDRH	strand
						73	1.36 S	QE A	TNNG N	GGV GN SCC LL	DERS CVVF	strand
1	0.41 S	YY E G		LIGL		74	3.52 I	IIC	AFFS A	TVS KK	TGDQ	strand
2	0.84 S	AA N AMM		DGQA		75	0.94 5	MQ Q SS I	NSSI R IVVC I	LVV LL	LIIV	strand
3	1.79 S P	ML D GNS.		TH N N SK C Y		76 77	3.75 I 0.48 S	SS I VV A	TAAK E	TTY RR	LTNR	strand
4	2.04 S P 0.80 S P		QG ERYGE RV PGKNI	OKNG		78	2.21 S P	EE I	VEQR H	SSV DD	DEDD	0.02.000
5	1.30 S P		DV KVNOL	TGER		79	0.41 S P	EER	ECCM S	PVV IV	DYRD	
7	0.17 S p		GV RII VV	FAFP		80	0.66 S P	TT P	DQQP E	CEH EE	PV P S	
8	0.27 1		T S IIV II	VTIK		81	0.91 S P	QQ E	SLLS D	QSD QK	EKDS	
9	0.91 5		R K RKK RR	RKRI		82	0.56 S P	II G	MMP Q	DNS GG	NGSG	
10	0.94 S	HH N EEE	K K EQK KK	QMED		83	0.37 S P	KK K	_KKK Q	FSL FF	MDDE	
11	0.50 I		G G GGG GG	GKDG	strand	84	1.11 S P	DE N	_TTR A	GNF MM	DNDR	
12	0.35 I		YY YCY HW	SDSE	strand	85	0.98 S P	RRN	_EEG M	KGG SS	D_LD	
13	5.47 I		LM LLL ML	LLLL	strand	86	0.72 S P	R	_RRT V	RRR MS	D_ K N	
14	0.60 S		IS N VLL VT KF KKK II	IA S K QR K I	strand	87 88	P 0.22 S P		s s _		<u> </u>	
15	1.00 S 0.58 S		KF KKK II RL KOK ON	VFLT		89	0.22 S P \$ P	— -	ĸ		G K	
16 17	0.93 S P		SE GGG NN	PKGS		90	0.24 S P		E		G	
18	0.61 S P		SE SHK LI	M_SV		91	0.24 S P		s	_K	Q	
19	0.51 S P		DK VRG GG	S_ G E		92	0.25 S P		D	_s	Е_ К	
20	- P			G		93	0.61 S P		_PPK K	_E_ S_	VK	
21	\$ P			s		94	0.75 S P		_RRQ V	_E_ R_	DW	
22	0.11 I P		II	L		95	0.64 S P	<u> </u>	_PPH P	MEP RK FNN VH	HS LRNH	
23	0.08 S P	FF .	IN T FR KK	S		96 97	0.87 S P 0.44 S	KK F CC V	CNNH N NTTY T	VLC TI	DKSM	strand
24	0.79 S P		IN T FR_KK	L_ K R K_ R R		97	5.47 I	IL F	FFFF F	FFF FF	FFFF	strand
25 26	0.82 S P 0.85 S P		TKG TNR GG	K_ I S		99	0.24 S	LLS	IVIT S	KEQ AA	KEEL	strand
27	0.55 I		W W WWW SS	EPWK		100	5.47 I	LL I	IIIV V	III LL	ILL	strand
28	0.69 5		RQ T KKK RK	GM S T		101	0.82 S	RK S	SRRN C	TIV FF	WW A I	strand
29	0.96 S	RR P RPF	PT R PVN PE	EQED		102	0.44 S P	VI M	NCCF T	TTV SN	VYPE	
30 .	0.51 S		KR MRLYY	RRRR	strand	103	1.05 S P	KR A	GLLS N	TAQ PT	EGRD	
31	0.61 I		W W WKY WW	QH K Y	strand strand	104	0.84 S P	GGS	GQQN Q	KDH DE QEF GQ	PEMQ KKQG	
32	4.01 I 5.47 I		FFV VFFFF LAIVIIVV	CL V A FF F F	strand	105 106	0.54 S P 0.79 S	GG V KK A	AWWD R QTTS G	QVS RR	DEPA	
33 34	5.47 I		LL V LLL LL	LLLL	strand	108	\$ P	IUX A	Q.10 G	NN		
35	0.25 5		KLR LRE TT	FYFL	strand	108	0.11 I P			vv		
36	1.78 S	PP S NSM	NOR EEG SA	SEDD		109	0.11 I P			YY		
37	0.24 S P	DI	DDS			110	0.79 S.P			E RK	s	
38	0.10 S P	GC	3PD	<u>kk</u> _ k		111	0.12 S P		_TT	E DD	P	
39	1.30 S P		IN P DAA EE		6	112	0.06 S P	н	_vvq _	_H YY	P	
40	0.27 S		FLY GYQ SN ILI ILLIL	HAGALILL	strand strand	113	0.68 S P	W	_IIK _ TEES _	DHI QQ	FE Q TV PG	
41	5.47 I		GFL EHISS	IVML	strand	114 115	0.73 S P 0.04 S	QQ S FF L	YRRL F	HYF LL	VYIY	strand
42 43	0.27 S 5.47 I		YY L FYY WW	IFVI	strand	115	0.72 S	VID	HTTE L	FFY EE	IIVE	strand
44	0.05 S		KFF YYFYY	CCLC	strand	117	5.47 I	LL V	LFFL M	FLF LL	LVLL	strand
45	0.94 S P		EE R KDE KK	ткск		118	0.69 S	QQ A	KHHR Q	QQA SA	VQTF	strand
46	0.79 S P		RS D KPS DD	RRKR		119	3.30 I	CC A	AVVT M	AAG CC	AA A F	strand
47	0.85 S P	GG T KP	PD D KAE ED	GRAR		120	2.54 S P	ED D	SDED M	AAE EE	SSKK	
48	P			N		121	1.13 S P	SS S	SSTD P	FTT TT	SN N T RV A R	
49	P			T		122 123	0.78 S P 2.18 S P	DD Q PP E	EPPS G VDEK D	LPP VQ EKE EE	QDQE	
50	P 0.26 S P			K		123	0.87 S	EE E	EEED E	EEQ DE	EVHL	helix
51 52	0.26 S P			E Q		125	0.29 5	FL L	RRRC M	RRA VV	KKKK	helix
53	0.24 S P			_s T _		126	0.81 S	AV Q	QEED Y	DTE ED	АМНК	helix
54	- P			_G P		127	0.86 S	QQ D	REEE D	AED SS	AT D K	helix
55	0.26 S P			_E S _		128	5.47 I	WW W	wwww w	www ww	ww w w	helix
56	- P			_G A		129	1.38 S	LK V	VMTV L	VIM KK	TLMM	helix
57	0.09 S P			SS G _		130	2.18 5	KK K	TRTA Y	RKK AA DAG SS	SKAE	helix helix
58	0.43 S P	N s A		GDA		131 132	0.31 S 5.47 I	EE K LL I	AAAA A LIII I	DAG SS IIL FF	DE D Q II L F	helix
59	0.47 S P	SA PE_	<u> </u>	KYAG		133	1.20 S P	TRR	EOOA N	NQQ LL	IRLE	helix
60 61	0.48 S P 0.56 S P	E	_SR SGR DE			134	1.56 S P	CDE	LMTR P	KMA RR	QNMM	helix
62	2.18 S P		QS D DAA EE			135	3.14 I	TA V	AVVA L	AAF AA	ĈI V A	helix
63	1.78 S P		DS L NET KK	LYYY		136	0.02 I	FY A	KAAS M		VLII	helix
64	0.85 S P	SA L TP	VR V SDK EE			137	2.53 S	NR Q	ANDY A	KRN VV	DLTS	helix
65	1.25 S P		DP I PPP KK			138	1.13 S	EET	KSGK G	CTL YY	NKKN	helix
66	0.92 S P		QSR KLKKK RGG GGGFY			139 140	0.14 S 0.93 S	AA A QQ D	ALLI Q VKKL M	IGR PP EKK EE	IQ S I RQ M Y	
67 68	1.98 S P 1.78 S		'RGG GGGFY ELI MALMM				2.65 5	RQ A		GSKR		
00	1.10 5	JU + 10									-	

Fig. 1. Consensus secondary structure prediction for the pleckstrin homology (PH) domain surface (S) and interior (I) predictions are stronger with increasing index value; "P" indicates a parse. SwissProt 27 accession numbers for sequences of the pleckstrin homology domains: a, P08567; b, P08567; c, P20936; d, P28818; e, P28818; f, P21575; g, P31749; h, P22059; i, P26675; j, P08567; k, P25098; I, P08567; m, P19174; n, P27870; o, P08567; p, P08567; q, P08567.

gence makes it impossible to align reliably the PH domain family by a fully automated process, and suggests that substantial divergence of secondary structure has occurred within the family. For example, the strand at alignment positions 68–71 would be strongly assigned if the PP dipeptide did not appear in sequence q. This could represent divergence of conformation within the family. Thus, just as the prediction for the hemorrhagic metalloprotease family¹⁶ tested the scope of the ETH prediction method for narrowly divergent protein families, this prediction tests the scope of our method for very divergent families.

Evaluation of the prediction will also undoubtedly be complicated by this sequence divergence, as it was with the SH3 domain.¹⁸ Approaches for evaluating consensus secondary structure predictions have been discussed elsewhere,^{19–21} and this discussion should be consulted before evaluating this or

An abundant protein domain in search of a function. FEBS Lett. 307:55-61, 1992

- Haslam, R.J., Kolde, H.B., Hemmings, B.A. Pleckstrin domain homology. Nature (London) 363:309-310, 1993.
 Mayer, J.B., Ren, R., Clark, K.L., Baltimore, D. A putative modular domain present in diverse signalling particles.
- modular domain present in diverse signalling proteins. Cell 73:629–630, 1993.
- 13. Gonnet, G.H., Benner, S.A. Computational biochemistry research at ETH. Technical Report 154, Departement Informatik, March 1991.
- 14. Musacchio, A., Gibson, T., Rice, P., Thompson, J., Saraste, M. The PH domain. a common piece in the structural patchwork of signalling proteins. Trends. Biochem. Sci., 18:343-348, 1993.
- 15. Benner, S.A., Badcoe, I., Cohen, M.A., Gerloff, D.L. Bona fide prediction of aspects of protein conformation: Assigning interior and surface residues from patterns of variation and conservation in homologous protein sequences. J. Mol. Biol. 235:926-958, 1994.
- Gerloff, D.L., Jenny, T.F., Knecht, L.J., Benner, S.A. A secondary structure prediction of the hemorrhagic metalloprotease family. Biochem. Biophys. Res. Commun. 194: 560-565, 1993.
- 17. Robson, B., Garnier, J. Protein structure prediction. Nature (London) 361:506, 1993.
- 18. Gerloff, D.L., Benner, S.A. Predicting the conformation of proteins: Man versus machine. FEBS Lett. 325:29-33, 1993.
- Gerloff, D.L., Jenny, T.F., L.J. Knecht, G.H. Gonnet, G.H., Benner, S.A. The Nitrogenase MoFe Protein: A secondary structure prediction. FEBS Lett. 318:118-124, 1993.
- 20. Russell, R.B., Barton, G.J. The limits of protein secondary structure prediction accuracy from multiple sequence alignment. J. Mol. Biol. 234:951–957, 1993.
- Jenny, T.F., Benner, S.A. Evaluating predictions of sec-21. ondary structure in proteins. Biochem. Biophys. Res. Commun. 200:149-155, 1994.

any other consensus prediction.

REFERENCES

- 1. Nishikawa, K., Ooi, T. Amino acid sequence homology applied to the prediction of protein secondary structure, and joint prediction with existing methods. Biochem. Biophys. Acta 871:45–54, 1986.
- 2. Crawford, I.P., Niermann, T., Kirschner, K. Prediction of secondary structure by evolutionary comparison: application to the a subunit of tryptophan synthase. Proteins 2:118-129, 1987.
- 3. Benner, S.A. Patterns of divergence in homologous proteins as indicators of tertiary and quaternary structure. Adv. Enzym. Regul. 28:219-236, 1989.
- 4. Benner, S.A. Predicting de novo the folded structure of proteins. Curr. Opin. Struct. Biol. 2:402-412, 1992.
- 5. Bazan, J.F. Structural design and molecular evolution of a cytokine receptor superfamily Proc. Natl. Acad. Sci. U.S.A. 87:6934-6938, 1990.
- 6. S.A. Benner. Predicting the conformation of proteins from sequences. Progress and future progress. J. Mol. Recog., in press.
- 7. Benner, S.A., Gerloff, D. Patterns of divergence in homologous proteins as indicators of secondary and tertiary structure: The catalytic domain of protein kinases. Adv. Enzyme Regul. 31:121–181, 1991
- 8. Russel, R.B., Breed, J., Barton, G.J. Conservation analysis and structure prediction of the SH2 family of phosphotyrosine binding domains. FEBS Lett. 304:15–20, 1992.
- 9. Benner, S.A., Cohen, M.A., Gerloff, D. A predicted secondary structure for the Src homology domain 3. J. Mol. Biol. 229:295-305, 1993.
- 10. Musacchio, A., Gibson, T., Lehto, V.-P., Saraste, M. SH3-

<. ,