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Self-Complementarity within Proteins: Bridging the Gap between
Binding and Folding
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ABSTRACT Complementarity, in terms of both shape and electrostatic potential, has been quantitatively estimated at protein-
protein interfaces and used extensively to predict the specific geometry of association between interacting proteins. In this work,
we attempted to place both binding and folding on a common conceptual platform based on complementarity. To that end, we
estimated (for the first time to our knowledge) electrostatic complementarity (Em) for residues buried within proteins. Em

measures the correlation of surface electrostatic potential at protein interiors. The results show fairly uniform and significant
values for all amino acids. Interestingly, hydrophobic side chains also attain appreciable complementarity primarily due to the
trajectory of the main chain. Previous work from our laboratory characterized the surface (or shape) complementarity (Sm) of
interior residues, and both of these measures have now been combined to derive two scoring functions to identify the native
fold amid a set of decoys. These scoring functions are somewhat similar to functions that discriminate among multiple solutions
in a protein-protein docking exercise. The performances of both of these functions on state-of-the-art databases were compa-
rable if not better than most currently available scoring functions. Thus, analogously to interfacial residues of protein chains
associated (docked) with specific geometry, amino acids found in the native interior have to satisfy fairly stringent constraints
in terms of both Sm and Em. The functions were also found to be useful for correctly identifying the same fold for two sequences
with low sequence identity. Finally, inspired by the Ramachandran plot, we developed a plot of Sm versus Em (referred to as
the complementarity plot) that identifies residues with suboptimal packing and electrostatics which appear to be correlated to
coordinate errors.
INTRODUCTION
All forms of biomolecular recognition are said to involve
interaction between complementary molecular surfaces.
This specific match between two interacting surfaces is
primarily supposed to have a dual aspect: 1) surface (or shape)
complementarity (1) arising out of the steric fit of closely
packed interface atoms in van derWaals contact; and 2), elec-
trostatic complementarity (2)mediated by long-range electric
fields due to charged or partially charged atoms. For small-
molecule ligands or cofactors binding to proteins, the above
point of view appears to be only partially true. Not only can
one ligand adopt a wide range of conformations upon binding
to different proteins, the binding pocket also exhibits more
variability in shape and physicochemical characteristics
than can be accounted for by the multiple conformations
adopted by the ligand (3–5). For protein-protein interfaces,
however, the concept appears to have greater plausibility
and wider appeal. Due to the relatively larger size of
protein-protein interfaces (~1600 Å2 on average) (6), the
surfaces have to be carefully tailored so that extended areas
burieduponassociation canmove into close contact.Avariety
of shape correlation and electrostatic complementarity
measures incorporated into docking algorithms have been
shown to be effective in predicting the interfaces between in-
teracting proteins (7,8). Electrostatic complementarity based
on optimized charge distribution has also been used to match
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two halves of the same molecule (myoglobin) from a reper-
toire of homologous structures (9). On the other hand, surface
complementarity has found application in determining native
side-chain torsions within proteins (10,11) and has also
served to rationalize the variability in the quaternary arrange-
ments of legume lectins (12). Lawrence and Colman (1) and
McCoy et al. (2) formulated and estimated shape correlation
(Sc) and electrostatic complementarity (EC) measures for
a wide range of proteins in quaternary association, protein-
inhibitor, and antigen-antibody complexes. It thus appears
reasonable that threshold values of geometric and electro-
static complementarities will have to be satisfied for the
stereospecific association between two polypeptide chains.
Within proteins, surface complementarity (Sm) has been
used to enumerate specific modes of packing between amino
acid side chains (13) and, somewhat analogously to protein
interfaces, all residues upon burial achieve uniformly high
measures of surface fit (14).

Although the notion of complementarity lends itself
naturally to the characterization of interprotein association,
it has been suggested that both binding and folding should
be approached from a common conceptual platform
(15,16). The native conformation adopted by the polypep-
tide chain leads to the stereospecific packing of its buried
side chains and optimal electrostatic interactions due to the
strategic three-dimensional placement of charges. Thus,
folding can possibly be described as the self-recognition of
the polypeptide chain as it collapses onto itself. However,
one inherent problem in equating binding with folding lies
doi: 10.1016/j.bpj.2012.04.029
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in the different characteristics of protein interiors compared
with interfaces. Barring dimers, interfaces resemble protein
surfaces rather than interiors, both in their composition and
in the spatial distribution of amino acid residues (17). Unlike
hydrophobic clusters found within proteins, nonpolar resi-
dues are found in isolation at protein-protein interfaces, sur-
rounded by polar or charged amino acids. However, despite
these differences, the fact remains that both interfacial (1)
and interior atoms (13,14) have to satisfy fairly stringent
packing requirements, and, at least for the interfaces, signif-
icant values of electrostatic complementarity have been
found (2,8). To explore the similarities or equivalence
between binding and folding (in terms of complementarity),
we first estimated the electrostatic complementarity (Em) of
residues buried within proteins from a representative data-
base of crystal structures. Second, in similarity to protein-
protein docking (7), we used scoring functions based on
Sm and Em for protein fold recognition, validated in state-
of-the-art databases. Lastly, to detect local regions of sub-
optimal packing and/or electrostatics in a native fold, we
developed a plot based on Sm and Em (in analogy to the
famous Ramachandran plot (18)) to identify such residues,
which appear to be correlated to coordinate errors.
MATERIALS AND METHODS

Two representative databases of high-resolution protein crystal structures

(resolution % 2.0 Å, R-factor % 20%, sequence identity % 30%) were

used in the calculations. The first database (DB1), consisting of 719 poly-

peptide chains, is described in detail elsewhere (13). This database was used

in the computation of all relevant statistics involving Sm. We assembled

a subset of this larger database consisting of 400 polypeptide chains

(DB2) by removing proteins with deeply embedded prosthetic groups

(e.g., cytochromes) and any missing atoms (data set S1 in the Supporting

Material). DB2 (composed of 65 all a, 70 all b, 106 ajb, 124 aþb, and

35 multidomain proteins) was used in the calculation of Em of amino

acid residues and their related statistics. Sixty-two of these proteins were

found to contain metal ions as an integral part of their structure. Hydrogen

atoms were geometrically fixed to all structures by means of the program

REDUCE (19).

Before calculating the electrostatic potential, we assigned partial charges

and atomic radii for all protein atoms from the AMBER94 all-atom molec-

ular-mechanics force field (20). Asp, Glu, Lys, Arg, doubly-protonated

histidine (Hip), and both the carboxy and amino terminal groups were

considered to be ionized. Crystallographic water molecules and surface-

bound ligands were excluded from the calculations and thus modeled as

bulk solvent. Ionic radii were assigned to the bound metal ions according

to their charges (21).

The van der Waals surfaces of the polypeptide chains were sampled at

10 dots/Å2. The details of the surface generation were discussed in

a previous report (14). We estimated the exposure of individual atoms to

solvent by rolling a probe sphere of radius 1.4 Å over the protein atoms

(22), and estimated the burial (Bur) of individual residues by the ratio of

solvent-accessible surface areas of the amino acid X in the polypeptide

chain to that of an identical residue located in a Gly-X-Gly peptide frag-

ment with a fully extended conformation.

The finite-difference Poisson-Boltzmann method as implemented in

Delphi (version 4) (23,24) was used to compute the electrostatic potential

of the molecular surface along the polypeptide chain. The protein interior

was considered to be a low dielectric medium (dielectric constant of 2)

and the surrounding solvent was considered a high dielectric medium
Biophysical Journal 102(11) 2605–2614
(dielectric constant of 80). Ionic strength was set to zero because adoption

of physiological strength has been found to have little effect on the final

electrostatic solution (25,26), and calculations were performed at 298 K.

The dielectric boundary and the partial charges were mapped onto a cubic

grid either 151� 151 � 151 or 201 � 201 � 201 grid points/side in size

(the latter for proteins that exhibited pronounced asymmetry in their phys-

ical dimensions). The percentage grid fill was set to 80% with a scale of

1.2 grid points/Å. Boundary potentials were approximated by the Debye-

Hückel potential of the dipole equivalent to the molecular charge distribu-

tion. A probe radius of 1.4 Å was used to delineate the dielectric

boundary. The linearized Poisson-Boltzmann equation (LPBE) was then

solved iteratively until convergence. The number of cycles to convergence

was automatically determined by the program (with the convergence

threshold based on the maximum change in potential set to 0.0001 kT/e),

and was monitored by examining a plot of convergence in the output log

file.

Delphi requires a set of surface points on which the electrostatic poten-

tials are to be computed along with a set of atoms that contribute to the

potential. After generating the van der Waals surface of the entire polypep-

tide chain, we identified the dot surface points of the individual amino acids

(targets) and fed them to the program along with the selected set of

(charged) atoms. The electrostatic potential for each residue surface was

then calculated twice: first, due to the atoms of the particular target residue,

and second, from the rest of the protein excluding the selected amino acid.

In either case, atoms that did not contribute to the potential (dummy atoms)

were only assigned their radii with zero charge, to maintain the scaling and

orientation of the molecule on the grid. Thus, each dot surface point of the

(selected) residue was tagged with two values of electrostatic potential.

Adapted from the function EC originally proposed by McCoy et al. (2)

(for protein-protein interfaces), the Em of an amino acid residue (within

protein) was then defined as the negative of the correlation coefficient

(Pearson’s) between these two sets of potential values:

Em ¼ �

0
BBBB@

PN
i¼ 1

ð4ðiÞ � 4Þð40ðiÞ � 40Þ�PN
i¼ 1

ð4ðiÞ � 4Þ2 PN
i¼ 1

ð40ðiÞ � 40Þ2
�1=2

1
CCCCA; (1)

where for a given residue consisting of a total of N dot surface points, 4ðiÞ
is the potential on its ith point realized due to its own atoms and 40ðiÞ, due to
the rest of the protein atoms, and 4 and 40 are the mean potentials of 4ðiÞ,
i ¼ 1.N and 40ðiÞ, i ¼ 1.N respectively.

After calculating the electrostatic potentials, we divided the values corre-

sponding to N dot surface points into two distinct sets based on whether the

dot point was obtained from main-chain or side-chain atoms of the target

residue, and calculated Em separately for each set. Thus for a given residue,

Em was estimated for the entire residue (Eall
m , as described above), the side-

chain surface points ðEsc
m Þ, and the main-chain surface points ðEmc

m Þ.
The calculation of Sm has been discussed extensively in previous studies

(13,14). Briefly, Sm can be calculated between the side-chain surface points

of a target residue and all other dot points in its immediate neighborhood

(within a distance of 3.5 Å), contributed by the rest of the protein. Any

dot surface point (which is essentially an area element) is characterized

by its coordinates (x, y, z) and the direction cosines of its normal (dl, dm,

dn). Sm is then defined (following Lawrence and Colman (1)) to be the

median of the distribution {S(a,b)}, S(a,b), calculated by the following

equation:

Sða; bÞ ¼ na$nb: exp
��w:d2

ab

�
; (2)

where na and nb are two unit normal vectors corresponding to the dot

surface point a (located on the side-chain surface of the target residue)

and b (the dot point nearest to a, within 3.5 Å), respectively, with dab the



Self-Complementarity within Proteins 2607
distance between them and w, a scaling constant set to 0.5. After identifying

nearest neighbors, we could also partition the side-chain surface points of

the specified residue into two sets by virtue of their neighbors coming

from either side-chain or main-chain atoms, and calculate Sm separately

for each set. Thus, every target residue (side chain) has three measures of

Sm based on the choice of its nearest neighbors (surface points), whether

obtained from side-chain ðSscm Þ, main-chain ðSmcm Þ atoms alone, or all atoms

ðSallm Þ. Because glycines lack any nonhydrogen side-chain atom, they were

excluded as targets from all calculations.

Two scoring functions (based on the amino acid identity (Res), burial

(Bur), Esc
m , and Sscm ) were formulated to identify the native fold amid

a set of decoys. Only residues that were completely (0.00 % Bur %
0.05) or partially (0.05 < Bur % 0.3) buried were considered. Initially,

the average and standard deviation (SD) for both Sscm (Sscm , sS) and Esc
m

(Esc
m , sE) were estimated (over their respective databases, DB1 and

DB2) separately for different amino acid residues (Ala, Val, etc.) distrib-

uted into three bins based on their burial (bin 1: 0.0 % Bur % 0.05; bin 2:

0.05 < Bur % 0.15; bin 3: 0.15 < Bur % 0.30). The center (mode:Esc
0 )

and the halfwidth at half-maximum height (gE) were also computed for

individual residues (in different burial bins) from the normalized

frequency distributions in Esc
m by numerical curve fitting. For the first

measure, we computed Sscm ðiÞ, Esc
m ðiÞ for all buried residues (i ¼ 1..N;

Bur % 0.30) of a given polypeptide chain, and calculated the following

expression:

CSgl ¼ 1

N
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The second scoring function was based on the conditional probability distri-

butions of Esc
m and Sscm for each residue type within a particular burial bin. As

in the previous case, three burial bins were considered. Distributions of Esc
m

and Sscm for a given residue type in a particular burial bin were then divided

into intervals of 0.05. The conditional probability distributions of Esc
m and

Sscm were then defined as

P
�
Csc

m ðiÞ
��fResðiÞ;BurðiÞg� ¼ N

�
Csc

m ðiÞXResðiÞXBurðiÞ�
NðResðiÞXBurðiÞÞ :

(4)

for the ith residue along the polypeptide chain, where Csc
m stands for either

Esc
m or Sscm , and N denotes the count of residues in the specified sets.

Thus, for example,
P
�
Sscm : 0:45� 0:5

��fValine;Bur : 0:0� 0:05g�
¼ N

�
ValineXð0:0%Bur%0:05ÞX�0:45<Sscm%0:5

��
NðValineXð0:0%Bur%0:05ÞÞ :

For any given polypeptide chain, the products of the conditional probabil-

ities in Sscm and Esc
m for each (ith) residue (i ¼ 1.N, Bur % 0.30) were then
summed and divided by the total number of buried residues (N), giving rise

to the following measure:

CScp ¼ 1

N

XN
i¼ 1;

Bur%0:3

�
P
�
Sscm ðiÞ

��fResðiÞ; BurðiÞg��

� �
P
�
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��fResðiÞ;BurðiÞg��
(5)

Z-scores corresponding to the native structure (along with its rank) for the

complementarity scores (CSgl, CScp) were calculated in a multiple decoy set
by the following equation:

ZCS ¼ CSnative � CS

s
; (6)

where CSnative is the score obtained for the parameter CSgl or CScp from the

native structure, and CS and s are the mean and SD for the scores in the

decoy set. Average ZCS (hZi) was calculated for the successful hits (native

at rank 1) in a decoy set.
RESULTS

Em within proteins

The electrostatic potential within proteins was computed by
means of the LPBE as implemented in Delphi (23,24), and
estimation of Em was adapted (see Eq. 1) from a method
proposed by McCoy et al. (2) for protein-protein interfaces.
Nonlinear PBE at nonzero ionic strengths is preferred for
highly charged molecules such as DNA (24), microtubules,
and ribosomal subunits (27). Globular proteins, however,
have appreciably low net charge densities, and LPBE has
been used extensively to compute electrostatic potentials
at protein-protein interfaces and solvent-exposed residue
surfaces (25,28,29). Electrostatic potentials estimated by
nonlinear PBE (in a trial calculation involving 150 polypep-
tide chains) under physiological counterionic strength
(0.15 M NaCl, ion exclusion radii: 2.0 Å) were virtually
identical to those calculated by LBPE (Fig. S1).

Em was estimated for all residues at the protein interior
(burial% 0.30; see Materials and Methods) from a database
of 400 polypeptide chains (DB2). To test the sensitivity of
Em with respect to the internal dielectric of the continuum
(εp), we repeated all calculations three times, setting εp to 2,
4, and 10, respectively. The root mean-square deviations
(RMSDs) among these three sets of Em values for different
residues were negligible, indicating the invariance of Em

at least in the commonly used ranges of εp (Fig. S2). Identical
calculations performed with higher internal dielectric (εp ¼
20 and 40) also preserved the overall trends in the results
(Table S1). It should be noted thatEmestimates the correlation
between potentials generated by the two sets of atoms (over
a collection of surface points) regardless of their magnitude.

Before the statistical analysis was performed, all
completely/partially buried (target) residues were distrib-
uted in three burial bins (burial: 0.0–0.05, 0.05–0.15,
0.15–0.30; see Materials and Methods). Enumeration of
the average Em values in each burial bin for different amino
Biophysical Journal 102(11) 2605–2614
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acids (targets), calculated over the entire residue surface
ðEall

m Þ, revealed a fairly uniform distribution among the
different residues, within the range of ~0.5–0.7 (Table 1).
The high positive values of Eall

m throughout the protein inte-
rior suggest that individual residues buried within proteins
have anticorrelated (complementary) surface electrostatic
potentials (Fig. S3) similar to those of protein-protein inter-
faces (2). In fact, Eall

m values for hydrophobic residues were
comparable to those for polar and charged amino acids.
From these observations, we thought that the main-chain
surface points could be contributing predominantly to Eall

m ,
especially for hydrophobic residues. To test this hypothesis,
we segregated the surface points by virtue of their residence
on main-chain/side-chain atoms, and calculated Em sepa-
rately for each set, i.e., Esc

m and Emc
m for side- and main-chain

surface points, respectively. As expected, Emc
m values were

again uniform for all the amino acids and comparable in
magnitude to Eall

m . Interestingly, even for hydrophobic resi-
dues, Esc

m was also found to exhibit fairly significant values.
However, differences were observed in Esc

m between hydro-
phobic (Val: 0.48, Leu: 0.46, Ile: 0.48, Phe: 0.41)
and charged/polar (Asn: 0.67, Gln: 0.64, Asp: 0.61, Glu:
0.63, Lys: 0.62, Arg: 0.56) residues, albeit within 1 SD
(~0.1–0.25; Table 1). Somewhat reduced values were ob-
tained for sulfur-containing amino acids (Cys: 0.34, Met:
0.32) and proline (0.34). A similar pattern was observed
in all three burial bins, indicating that within the protein
interior, the distribution in Em appears to be independent
of the exposure of a residue to solvent.

To assess the relative contribution of side- or main-chain
atoms to Em, we performed four more sets of calculations
TABLE 1 Native electrostatic complementarities of

completely buried residues

Residue Eall
m Esc

m Emc
m

ALA 0.68 (0.17) 0.48 (0.25) 0.72 (0.17)

VAL 0.62 (0.16) 0.48 (0.18) 0.72 (0.16)

LEU 0.61 (0.16) 0.46 (0.19) 0.73 (0.16)

ILE 0.61 (0.16) 0.48 (0.17) 0.72 (0.16)

PHE 0.56 (0.15) 0.41 (0.16) 0.70 (0.17)

TYR 0.58 (0.15) 0.50 (0.19) 0.69 (0.18)

TRP 0.57 (0.15) 0.50 (0.17) 0.68 (0.20)

SER 0.64 (0.18) 0.59 (0.27) 0.67 (0.18)

THR 0.62 (0.16) 0.55 (0.23) 0.68 (0.18)

CYS 0.51 (0.18) 0.34 (0.22) 0.66 (0.21)

MET 0.45 (0.13) 0.32 (0.16) 0.72 (0.16)

ASP 0.63 (0.22) 0.61 (0.26) 0.62 (0.17)

GLU 0.64 (0.25) 0.63 (0.28) 0.66 (0.19)

ASN 0.68 (0.17) 0.67 (0.22) 0.68 (0.17)

GLN 0.66 (0.17) 0.64 (0.21) 0.70 (0.18)

LYS 0.72 (0.17) 0.62 (0.22) 0.75 (0.15)

ARG 0.68 (0.16) 0.56 (0.19) 0.75 (0.15)

PRO 0.53 (0.20) 0.34 (0.23) 0.65 (0.19)

HIS 0.54 (0.26) 0.50 (0.28) 0.65 (0.21)

Average Em values and their SDs (in parentheses) for different residues in

the first burial bin (0.0 % Bur % 0.05) were calculated from all atoms

on the entire residue surface ðEall
m Þ, the side-chain surface ðEsc

m Þ, and the

main-chain surface ðEmc
m Þ.
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based on the choice of residue surface (target: side chain/
main chain) on which to calculate the electrostatic potentials
and the atoms (side chain/main chain) contributing to the
potential:

Set 1: Main-chain surface, main-chain atoms.
Set 2: Side-chain surface, main-chain atoms.
Set 3: Side-chain surface, side-chain atoms.
Set 4: Side-chain surface, side-chain atoms of the target,

and all atoms from the rest of the polypeptide chain.

Except for the choice of surfaces and atoms, the method
used to calculate Em was identical to that outlined above.
As expected, set 1 gave a uniform distribution in Em with
elevated values for all residues (Table S2). For set 2, fairly
significant values of Em were still retained for hydrophobic
residues (Ala: 0.43, Val: 0.44, Leu: 0.42, Ile: 0.43, Phe:
0.36, Met: 0.38), which is a reflection of the long-range
electric fields generated by the main-chain atoms over-
whelmingly contributing to the complementarity attained
on hydrophobic side-chain surfaces. This was confirmed by
the comparison of Em in set 2 and Esc

m : both sets of values
were almost identical for hydrophobic residues (Table 1
and Table S2), whereas polar/charged residues exhibited
a marked reduction in set 2 compared with Esc

m , because the
contribution of side-chain atoms carrying high partial
charges was disregarded in set 2. For both set 3 and set 4,
Em for hydrophobic residues were practically negligible
(Table S2); however, polar/charged residues gave consis-
tently high values for set 4 but were distinctly reduced for
set 3. The substantial increase in Em for set 4 relative to set
3 (except for alanine) was indicative of the considerable
role played by the main-chain atoms (contributed by the
rest of the polypeptide chain) in the overall determination
of Em. This holds true even for hydrophilic amino acids,
where the main-chain atoms contribute appreciably to the
neutralization of the electric fields generated by polar/
charged side-chain atoms.

It is thus evident that the long-range electric fields gener-
ated by main-chain atoms cast their shadow over the side-
chain surface in such a manner that all residues, regardless
of their hydrophobicity and burial, attain a fairly uniform
level of overall complementarity. Polar/charged (side-chain)
atoms of hydrophilic residues additionally contribute to
the elevated complementarity attained on their side-chain
surfaces.
Application of Sm and Em in fold recognition
and structure validation

The second part of the work has to do with the application of
Sm and Em in the area of protein fold recognition and struc-
ture validation. Two such scoring functions were designed
based on the combined use of the complementarity
measures obtained for different residues distributed in the
aforementioned burial bins.
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Plots of the normalized frequency distributions in Sscm , E
sc
m

for the individual residues in each burial bin (i.e.,
PðSscm jfRes; BurgÞ, PðEsc

m jfRes; BurgÞ) gave characteristic
curves (symmetric for Sscm and negatively skewed for Esc

m ),
which fitted best to Gaussian and Lorentzian functions for
Sscm and Esc

m , respectively (goodness of fit, R2 R 0.85 for
all cases; Fig. 1). From these observations, the first scoring
function (CSgl) was designed based on Gaussian for Sscm and
Lorentzian for Esc

m (see Eq. 3.). The second function (CScp)
directly multiplies the conditional probabilities
PðSscm jfRes; BurgÞ and PðEsc

m jfRes; BurgÞ for each residue
along the polypeptide chain to obtain the joint probability
of their co-occurrence. These individual probabilities were
averaged over all buried residues (Bur % 0.3) in the poly-
peptide chain to give the final score (see Eq. 5.). The condi-
tional probabilities were estimated previously (see Materials
and Methods).

It is to be noted that both CSgl and CScp are averages of
individual scores given by all the completely/partially
buried residues in a protein and thus are independent of
the polypeptide chain length. Thus, for any given native
structure, one would expect their values to cluster around
optimal numbers characteristic of native folds. The distribu-
tions of CSgl and CScp computed for the native folds (in
DB2) had a very good linear correlation between each other
(R2 ¼ 0.94; Fig. S4) and gave mean values of 3.7 (5 0.437)
and 0.015 (5 0.0017), respectively. Thus for the native
folds, these functions exhibit a reduced scatter about the
mean, whereas for decoys, reduced scores for both functions
are to be expected. The decoy sets used to benchmark and
validate the scoring functions included both single and
multiple decoys, with Z-scores calculated for the latter
(see Eq. 6.). Because both of the knowledge-based scoring
functions were parameterized on crystal structures alone,
NMR structures were excluded in their validation.
Identification of the native crystal structure from
decoys

One of the single decoy sets tested, Misfold (30), consists of
26 pairs of structures. In each pair, the native sequence is
threaded onto an unrelated fold to generate the decoy.
Twenty-five pairs were considered in the calculation (with
the exception of 1CBH, which is an NMR structure). The
Pdberr decoy set (31) consists of three correctly solved
x-ray crystal structures along with their erroneous decoy
counterparts, whereas sgpa (32) contains the experimental
structure of Streptomyces griseus Protease A (2SGA) and
its two corresponding decoys, generated by molecular-
dynamics simulations. For the three data sets, both functions
successfully identified the native structure from the corre-
sponding decoys for all cases (Table S3). A comparison
with other knowledge-based scoring functions (Table S4)
shows that the performance of the complementarity scores
in single decoy sets is as efficient as or better than the other
functions.

The four-state reduced decoy set (33) consists of seven
sequences (chain length ranging from 54–75 residues),
each with nearly 600–700 decoys that include structures
with RMSD (Ca atoms) ranging from 0.8 to 9.4 Å from
the native. Out of the seven sequences, six native structures
were correctly identified (rank 1) by CSgl and CScp with
significant Z-scores (Table S5 A). In the case of 4RXN
(all-b class), the native structure was found to be at ranks
10 and 15, respectively, for CSgl and CScp. Further investiga-
tion revealed that 4RXN has negligible side-chain packing
between its secondary structural elements. The decoy set,
Fisa (34), contains four small (43–76 residues) all-a
proteins, with 500 decoys for each set. Major failures
were encountered for this decoy set, where both CSgl
and CScp were successful in detecting the native at the top
rank in two out of the four proteins (Table S5 B).
1HDD-C was detected at ranks 4 (CSgl) and 5 (CScp);
however, for 1FC2, both of the functions failed entirely,
leading to insignificant or negative Z-scores. This was due
to minimal packing between the helices for these low-
resolution structures (2.8 Å). It is notable (Table S6) that
for 1HDD-C, 1FC2, and 4RXN, failure is quite common
even for the other functions.

Hg_structal is a decoy set composed of 29 globins (35).
Each globin was built by comparative modeling using 29
other globins as templates, with Ca RMSDs ranging from
FIGURE 1 Normalized frequency distributions

of Sscm and Esc
m give characteristic curves that fit

best to Gaussian and Lorentzian functions, respec-

tively. These normalized frequencies for a given

burial bin (Bur) and residue type (Res) can also be

interpreted as conditional probabilities

PðSscm jfRes; BurgÞ and PðEsc
m jfRes; BurgÞ. (A)

Distribution in Sscm for leucine (0.0 % Bur % 0.05)

fitted to a Gaussian function (R2 ¼ 0.997). (B)

Distribution in Esc
m for asparagine (same burial)

fitted to a Lorentzian function (R2¼ 0.948). Similar

curves were obtained for all completely/partially

buried amino acids for all three burial bins.
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1.96 to 8.57 Å. Thus, for each native globin chain there are
29 decoys. In 23 out of 29 globins, both CSgl and CScp were
able to correctly detect the native at the top rank (hZi: 3.23
and 3.24, respectively; Table S7 A). For similar
decoy sets, ig_structal CSgl and CScp were successful in
48 and 50 cases (hZi: 3.89, 3.91) out of 61 immunoglobu-
lins, whereas for ig_structal_hires (subset of 20 high-
resolution structures), 100% success was achieved for
both (Table S7, B and C).

The ROSETTA all-atom decoy sets are built for small,
single-domain proteins by the fragment insertion-simulated
annealing strategy. The latest ROSETTA decoy set (36)
contains >75,000 decoys for 41 proteins (25 of which are
x-ray structures, and with the number of decoys in each set
ranging from 1610 to 1934), sampling a wide variety of
topological folds and polypeptide chain lengths ranging
from 35 to 85 amino acids. CSgl, CScp were able to rank
the native in 23 and 24 instances, respectively (out of 25).
The high average Z-scores (7.24 and 6.98) also demonstrate
the discriminatory ability of both scoring functions (Table
S8). The only major failure was encountered for 1CC5
(detected at ranks 36 and 58), which is a cytochromeCmole-
cule with an embedded Feþ2-containing protoporphyrin
IX ring. Because only protein atoms were considered, a
false picture of interior atomic packing was available to
the scoring functions.

CASP9 (37) is probably the most challenging test,
because the decoys are the best-predicted near-native
models submitted by different groups that participated in
the CASP experiment. CASP9 (conducted in July–August,
2010) consisted of 111 valid targets with 90 x-ray crystal
structures. T0543 (2XRQ) and T0605 (3NMD) were not
considered in the calculation, the former because of its
excessively huge chain length (887 residues) and the latter
because it is a single standalone helix. For the remaining
88 targets (with a total of 9197 models, chain length ranging
from 83 to 611 residues) CSgl and CScp detected the native at
the top rank in 70, 72 and 85, 86 within rank 5 (<Z>: 3.65,
3.95), respectively (Table S9).
structures produced by randomization of the side-chain conformers (with lower

(higher values). Similar patterns were obtained for CSgl. Except for 2HAQ, al
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Discrimination between good and bad RMSD
models

To test the sensitivity of the functions with respect to devi-
ations from the experimentally determined coordinates of
the side-chain atoms, we selected 10 native (top ranked)
targets from CASP9 along with their corresponding models.
After superposing the models onto the native structure by
Dali server (38), we calculated the RMSD of the side-chain
atoms at a one-to-one atomic correspondence with respect to
the native. Local deviations (in Ca) > 10 Åwere considered
to be so large as to lose all structural relationship with the
corresponding region of the native, as well as models that
were nonsuperposable (by Dali), and these were thus not
included in the calculation. CSgl and CScp of the native
structure and ~60 models per target were then plotted
(Fig. 2 and Fig. S5) as a function of their RMSDs (ranging
from ~1.5 to 10 Å). Although the scores generally fell with
an increase in RMSD, especially in the range of 1.5–5 Å,
there was substantial scatter among the points that belied
the expectation of obtaining a functional relationship
between the two variables. However, because these RMSDs
contain contributions from both main- and side-chain devi-
ations, we performed a second calculation (with 10 struc-
tures; Fig. 2) in which the backbone coordinates were held
fixed and errors were incorporated into the side-chain
conformations using three distinct methods: 1), random-
izing the side-chain c-angles (50 erroneous models) (13);
2), subjecting the same 50 models as in method 1 to an
energy minimization protocol (using CHARMM (39)) as
described previously (13); and 3), obtaining a unique solu-
tion as determined by SCWRL4.0 (11) upon threading.
Two distinct clusters were obtained for methods 1 and 2,
and energy minimization significantly improved scores in
method 2 relative to method 1. The models derived from
SCWRL4.0 (method 3) generally gave values closest to
the native (Fig. 2 and Fig. S6), and rarely a few structures
from method 2 gave similar/slightly better scores than
method 3 (Fig. S6). Thus, the scores indeed reflect errors
FIGURE 2 Complementarity scores drop with

increased errors in side-chain coordinates. (A)

CScp values as a function of side-chain RMSDs

for three CASP9 targets (native and models).

N1, N2, and N3 correspond to the native crystal

structures of T0522 (3NRD), T0623 (3NKH),

and T0586 (3NEU), respectively, and their

corresponding models plotted in red, green,

and blue. (B) CScp values as a function of side-

chain RMSDs for three globular proteins and

their models (see text). N1, N2, N3 and S1, S2,

S3 correspond to the native structures and the

unique solutions generated by SCWRL4.0 for

2OEB (red), 3COU (green), and 2HAQ (blue),

respectively. The two distinct clusters are for

values) and energy minimization of the same set of randomized conformers

l structures are from DB2.
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in side-chain coordinates as estimated by RMSD (with
respect to native) and generally drop with an increase in
error.
Fold recognition by cross-threading

The scoring functions were also tested for protein pairs that
belonged to the same fold but had low sequence identity
upon alignment. We selected 100 such pairs (sequence iden-
tities ranging from 6% to 30%) sampling diverse folds from
the PREFAB4.0 database (40). The sequence identities upon
structural alignment for each pair were determined by Dali
Server (38) and their folds assigned according to the SCOP
database (41) (data set S2). For every pair, we aligned the
two native sequences using CLUSTAL W (42). Insertions
in the sequence to be threaded onto the main chain (of its
partner) were excised, whereas deletions were padded
with glycine to maintain the correct position of the threaded
residues consistent with the alignment. For the cross-
threaded sequences, padded polyglycine stretches at the
N- and C-termini were also excised before the calculations
were performed. When the fold was part of a larger polypep-
tide chain (domain), two possibilities were considered. If the
fold was found to be completely separated from the other
domains in the chain, it was considered in isolation for all
subsequent calculations, whereas if the fold was found to
be integrally embedded in the composite structure, the entire
chain was used to calculate Sscm and Esc

m , and the relevant
residues in the domain were then used to compute CSgl
and CScp. For all pairs, the native structures gave character-
istic similar scores (Table S10) for both CSgl and CScp. The
two sequences were then cross-threaded onto the backbone
of each other, with their side-chain torsions being set to
values determined by SCWRL4.0 (11). For each such pair,
100 random sequences (%15% identity between any two
sequences in a set) were threaded onto each of the two cor-
responding templates according to the same protocol.
Hydrogen atoms were geometrically fixed by REDUCE
(19) in all models. In a large majority of the cases, the
average score of the two cross-threaded structures was
found to be markedly lower than that of their native counter-
parts but noticeably higher (Z R 2 for 86, 87 pairs) than
those obtained from the random decoys (hZi: 3.43, 3.33
for CSgl, CScp, respectively). However, below 15% sequence
identity, there was a drop in the Z-scores (<1.5 for 5 out of
21 such pairs) primarily due to large mismatches in struc-
tural (Dali server) and sequence (CLUSTL W) alignments.
In general, large variations were observed in the Z-scores
(ranging from 0.4 to 8.0; Table S10) for different folds.
Complementarity plot

In contrast to evaluating the overall quality of an atomic
model in terms of packing and electrostatics, Sscm and Esc

m

can also be used to identify local packing defects and regions
of suboptimal electrostatics in a crystal structure. To that end,
we plotted the individual (Sscm , E

sc
m ) values of completely/

partially buried residues in a complementarity plot (CP)
spanning �1.0 to 1.0 in both the X ðSscm Þ and Y ðEsc

m Þ axes.
Given the fact that for residues in correctly folded proteins
both Sscm and Esc

m are largely constrained to a limited range
of values (as a function of their burial), regions in CP encom-
passing points corresponding to such amino acids could be
clearly delineated. From DB2, we plotted Sscm and Esc

m of all
(target) residues irrespective of the amino acid type sepa-
rately based on their burial bins, accounting for 23,850,
10,624, and 13,255 residues in bins 1, 2, and 3, respectively
(see Materials and Methods). Thus, in all, three plots (CP1,
CP2, and CP3) were obtained (Fig. S7, Fig. S8, and
Fig. S9). Each two-dimensional plot was then divided into
square grids (0.05� 0.05wide) and the probability of finding
any residue (Pgrid) in a particular grid was estimated by the
ratio of the number of points in that grid to the total number
of points in the plot. The plots were then contoured based on
their probability values Pgrid R 0.005 for the first contour
level andR 0.002 for the second. The cumulative probability
of locating a point within the second (outer) contour for the
three plots was 91%, 90%, and 88%, respectively, whereas
for the first (inner) contour, the probability gradually dropped
with increasing solvent exposure to 82%, 76%, and 71%,
respectively. Inspired by the Ramachandran plot (18), we
termed the region within the first contour ‘‘probable’’, that
between the first and second contours ‘‘less probable’’, and
that outside the second contour ‘‘improbable’’. In such
a plot, residues with low Sscm andEsc

m (<0.2 for both) are easily
identified. However, in general, residues with suboptimal
packing (as a function of their burial) and electrostatics could
lie in sections partially spanning all three regions of the plots.

To test whether these suboptimal points (in CPs) were
correlated with coordinate errors, we obtained 20 pairs of
crystal structures consisting of an upgraded structure and
its superseded partner from the PDB (Table S11). Subsequent
to superposition by Dali server, residues from each pair were
selected whose RMSD between side-chain atoms exceeded
1.5 Å for the first burial bin (with respect to native) and
2.0 Å for the second and third bins (method 1) (43). These
residues were considered to be erroneous in the superseded
PDBfile. In addition, the calculationwas repeated for residue
pairs whose deviation in the side-chain (c1) torsionwas>40�

(method 2) (43). Of note, the same residue could have
different burials in the two files (superseded and upgraded).

The distribution of points for the upgraded and super-
seded structures was markedly different in the plots. Based
on DB2, 82.1%, 9.2%, and 8.7% of the total points were
found to be located in the probable, less-probable, and
improbable regions, respectively, for the first burial bin
(for the other bins, see Table S12). In sharp contrast, the
distribution (method 1) was respectively 41.4%, 14.6%,
44.0% for the superseded structures, and 80.2%, 9.6%,
and 10.2% for the upgraded structures. Deviation from the
Biophysical Journal 102(11) 2605–2614
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expected distribution (DB2) was estimated by c2 in each
plot (CP1, CP2, and CP3) for both the superseded and up-
graded sets. c2 (df ¼ 3–1: probable, less probable, improb-
able; c2

0:05 ¼ 5.991) for burial bins 1, 2, 3 were found to be
1.1, 10.2, 15.7 and 503.9, 275.3, 187.8 for the upgraded and
superseded sets, respectively. A similar pattern was also
obtained for method 2 (Table S13). Thus, residues with posi-
tional errors have a heightened tendency to lie in the less-
probable and improbable regions of the plot (Fig. 3,
Fig. S10, and Fig. S11) associated with low complementar-
ities. However, because CPs are essentially probabilistic in
nature, there is a significant likelihood to encounter false
positives (in the probable regions), specifically with regard
to coordinate errors.
DISCUSSION

In the case of specific association, at least among proteins,
some correspondence is to be expected between the geomet-
rical features of their associating surfaces and their electro-
static potentials at the interface. Likewise, for a correctly
folded globular protein, all buried residues should achieve
optimal packing within the interior of the molecule and
meticulously balance the electric fields that arise from
different parts of the folded chain so as to neutralize all desta-
bilizing electrostatic effects. Several calculations have
confirmed that for correctly folded proteins, all residues
upon burial exhibit fairly high levels of Sm for their side-chain
atoms, enabling dense packing (13,14). To our knowledge,
this is the first time that Em has been calculated within
proteins to extend the analogy between folding and binding.
The results show that one of the universal characteristics of
correctly folded proteins is the almost uniformly elevated
values in Sscm and Esc

m attained by all deeply buried residues
(Fig. S12). However, the constraints in Sscm appear to be
more stringent relative to Esc

m , given its reduced SD,
compared with the latter. The nature of short- and long-range
forces that determine the values of Sscm and Esc

m also gives rise
to their contrasting features. Sscm is a function of burial,
whereas Esc

m is not (Table S14). Furthermore, the primary
determinants of Sscm and Esc

m are side-chain atoms (for all resi-
dues) and main-chain atoms (for hydrophobic residues),
respectively, whereas both side-chain and main-chain atoms
contribute equally to the Esc

m of hydrophilic residues.
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The fact that both folding and binding require a narrow
window of Sm and Em values was used to predict the native
fold of a sequence. Both functions (CSgl and CScp) based on
the probability distributions in Sscm and Esc

m performed
successfully in state-of-the-art decoy sets. This could be
considered analogous to protein-protein docking, wherein
both surface and electrostatic complementarities rise to their
optimum values upon the interlocking of interacting protein
molecules in the correct stereospecific geometry of associa-
tion. That is to say, folding can be envisaged as the docking
of interior residues to their respective native environments
consistent with short- and long-range forces. The fact that
the performance of both functions was comparable to or
better than the best scoring functions currently available in
the literature demonstrates the practical application of
complementarity in the area of protein folding and structure
prediction. The functions were also found to be useful for
correctly identifying the same fold for two sequences with
low sequence identity. Lastly, individual residues with
suboptimal packing and electrostatics are easily identified
in the CPs, which are highly correlated with coordinate
errors. In contrast to the Ramachandran plot, which detects
errors in backbone atoms due to local steric overlap, CPs
detect side-chain conformations that are in disharmony
with short- and long-range forces sustaining the native fold.
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