_J. Mol. Biol. (1993) 229, 1065-1082

Empirical and Structural Models for Insertions and
Deletions in the Divergent Evolution of Proteins

Steven A. Benner, Mark A. Cohen

Institute for Organic Chemistry
Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland

and Gaston H. Gonnet

Institute for Scientific Computation
Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland

( Recetved 27 July 1992 accepted 27 October 1992)

The exhaustive matching of the protein sequence database makes possible a broadly based
study of insertions and deletions (indels) during divergent evolution. In this study, the
probability of a gap in an alignment of a pair of homologous protein sequences was found to
increase with the evolutionary distance measured in PAM units (number of accepted point
mutations per 100 amino acid residues). A relationship between the average number of
amino acid residues between indels and evolutionary distance suggests that a unit 30 to 40
amino acid residues in length remains, on average, undisrupted by indels during divergent
evolution. Further, the probability of a gap was found to be inversely proportional to gap
length raised to the 17 power. This empirical law fits closely over the entire range of gap
lengths examined. Gap length distribution is largely independent of evolutionary distance.
These results rule out the widely used linear gap penalty as a satisfactory formula for
scoring gaps when constructing alignments. Further, the observed gap length distribution
can be explained by a simple model of selective pressures governing the acceptance of indels
during divergent evolution. Finally, this model provides theoretical support for using indels
as part of “‘parsing algorithms”, important in the de novo prediction of the folded structure
of proteins from the sequence data.
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1. Introduction

Alignments of homologous protein sequences are
among the most important tools in the analysis of
protein structure (Edwards & Cavalli-Sforza, 1963:
Zuckerkandl & Pauling, 1965; Fitch & Margoliash.
1967; Doolittle, 1990). Sequence alignments are the
starting point for all successful methods for
predicting de novo the folded structure of proteins
(Crawford ef al., 1987; Benner, 1989; Niermann &
Kirschner, 1990; Bazan, 1990; Benner & Gerloff.
1991); the remarkable accuracy of three predictions
made using these methods (Hyde et al, 1988:
Knighton et al., 1991; de Vos et al., 1992) have

opened a new generation of protein structure predic-

tion efforts (Thornton el al., 1991; Benner, 1992).
Alignments are also the starting point for know-
ledge-based structural models of proteins (Blundell
et al., 1987), and are used to estimate the number of
different types of protein folds (Taylor, 1990; Dorit

et al., 1990: Doolittle, 1991; Gonnet e al., 1992), to
interpret data from various genome sequencing
projects (Sulston et al., 1992; Oliver ef al., 1892), and
to resolve evolutionary issues from the origin of
man to the origin of life (Benner et al., 1989).
Protein sequence alignments can be constructed
using the dynamic programming algorithm of
Needleman and Wunsch (Needleman & Wunsch,
1970; Sellars, 1974; Sankoff & Kruskal, 1983;
Arratia et al., 1986). When used with scoring
matrices derived as proposed by Dayhoff et al.
(1978), this algorithm provides the alignment of two
sequences that maximizes the probability that the
two have evolved from a common ancestor, as
opposed to their having arisen independently (the
null hypothesis). The algorithm is therefore a
“maximam likelihood estimator”. As such indi-
cators are unbiased (I'reund, 1971), estimates of
probabilities can be assigned to alignments
constructed with: this algorithm and used to evalu-
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ate the evolutionary relation between aligned
protein sequences.

Alignment procedures were further advanced by
the pioneering work of Dayhoff et al. (1978). This
work produced empirical Dayhoff matrices indi-
cating the relative probability of each of 210
possible matches and mismatches between the 20
standard amino acids. These matrices provide the
empirical grounds for scoring matches and
mismatches in a protein alignment. Feng et al.
(1985) have found that the quality of a Needleman—
Wunsch alignment can be improved with the help of
a  Davhoff matrix, especially when aligning
distantly homologous sequences.

\When an alignment contains gaps, the parameters
needed as inputs by a dynamic programming algo-
rithm  before constructing alignments have
remained elusive, however (Fitch & Smith, 1983;
Feng & Doolittle, 1987; Altschul, 1989; Demchuk et
al.. 198%: Thorne et al., 1992; Pascarella & Argos,
1992). Gaps result from insertion and deletion
events {indels) during divergent evolution. They are
traditionally scored using arbitrary numerical
recipes. The most common of these involves
assigning a gap penalty of the form (ak+b), where £
is the length of the gap, and a and b are arbitrarily
chosen parameters. There has been no theory,
however. to assist the selection of the parameters to
be used in such numerical recipes, to estimate the
confidence that should be placed in alignments
derived using these recipes, or even to suggest that
such recipes offer a valid approach for scoring align-
ments that contain gaps (Thorne et al., 1992).

We recently reported the organization of the
entire protein sequence database using a “‘patricia
tree”” data structure (Gonnet ef al., 1992). In addi-
tion to allowing rapid retrieval of the sequences of
homologous proteins, the organization makes
possible an exhaustive matching of the sequence
database. Exhaustive matching is defined as the
product of an attempted Needleman—-Wunsch align-
ment of every subsequence in the database with
every other subsequence. The 17 million pairs of
matched sequences obtained in the exhausting
matching provided a basis for systematic investi-
gation of divergent evolution at the level of protein
sequences. One conclusion of this investigation was
that the Dayvhoff matrices widely used to score
alignments (Dayhoff et al., 1978) are not optimal,
especially for protein pairs separated by large evolu-
tionary distance (Gonnet et al., 1992). Another
paper describing the preparation of Dayhoff
mutation matrices was published recently (Jones et
al., 1992).

Exhaustive matching also provides the resources
needed to construct an empirically grounded model
of indels during divergent evolution. This is the
topic of this paper. The primary data reported here
concern the frequency of indels as a function of
evolutionary distance, the relationship between the
length of a gap and its frequency of occurrence, and
the types of amino acid residue in the regions
flanking the gap and within the insert, drawn from

data that include the entire protein sequence
database.

From these data, mathematical models describing
the probability of an indel as a function of various
parameters are constructed, together with estimates
of these parameters and approximate values for the
length distribution of gaps in an alignment. The
most successful model restores an accurate notion to
the similarity score describing an alignment tha:
includes gaps. These scores are normally expressed
as logarithms of a conditional probability (multi-
plied by 10). Further. a structural model based or.
an underlying view of protein folding is developec
to account for the successful mathematical model.

The most significant aspects of this model ave:

(1) The probability of a gap in an alignment «f
two protein sequences is a function of the evolu-
tionary distance between the sequences. A linvar
relationship is observed when the average number
of amino acid residues per indel is plotted against
the average number of amino acid residues per
mutation, proportional to the reciprocal of evolu-
tionary distance measured in PAMT units (acceptec
point mutations per 100 amino acid residues). Arn
extrapolation to infinite evolutionary distance
suggests that a polypeptide segment averaging 30 t¢
40 amino acid residues in length remains undis-
rupted by indels. This length corresponds to ar
often presumed size of a folding unit in peptide
chemistry (Wetlaufer. 1981; Thomas & Luisi, 1986
Patthy, 1991).

(2) The distribution of gap size is essentially inde-
pendent of the evolutionary distance berween twe
sequences, with only a modest decrease in average
gap length at increasing PAM distance.

(3) With remarkable precision, the distribution of
gap length follows a generalized Zipfian distributior.
(Gonnet & Baeza-Yates, 1991), where the prol-
ability distribution of gap length is inversely
proportional to gap length raised to the 1'7 power

(4) These results exclude an exponential distribu-
tion of gap lengths. and the corresponding (ah+14
recipe used in most sequence alignment program:
for scoring gaps.

(6) The Zipfian gap length distribution is con-
sistent with the hypotheses that an indel is acceptec
by natural selection when its ends lie near in space.
that the insert adopts a random coil conformation.
and that the behaviour of a randomly coiled com-
ponent of a folded polypeptide is governed by laws
governing the statistical mechanics of isolatec
randomly coiled polymers (Flory, 1953).

(6) This analysis adds theoretical support to the
intuitive rule, widely suspected for some time, that
indels occur between standard secondary structurai
elements (aipha helices and beta strands) of folded
proteins. The use of gaps as parsing elements in the
de novo prediction of the conformation of proteins

t Abbreviations used: PAM distance: accepted point
mutations per 100 amine acid residues: v.mus.. root-
mean-square.
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from sequence data has been described in length
elsewhere (Crawford ef al., 1987, Benner, 1989;
Benner & Gerloff, 1991).

2. Methods
(a) The exhaustive matching

An exhaustive matching of the protein sequence data-
base was recently completed in these laboratories (Gonnet
& Benner, 1991; Gonnet ef al.. 1992). This corresponds in
result (but not in method) to attempting a dynamic
programming (Needleman & Wunsch, 1970) matching
between every subsequence and every other subsequence
within the database. Results of the matching, obtained
using the MIPS Version 64 database. have been confirmed
by a second exhaustive matching of Version 19 of the
Swiss-Prot database {Bairoch & Boeckmann., 1991, 1992).
As the first database contains approx. 84 million sub-
sequences (n), an exhaustive matching is equivalent to
approx. 35 trillion (n?/2) attempted alignments. These, of
«course. could not be performed by even the fastest super-
computer given several millennia. Therefore, a search
algorithm based on a “patricia tree” data structure
(Gonnet & Baeza-Yates. 1991) was applied; this data
structure allows a search that vields a final result identical
to that which would be obtained by direct cross-matching
of the entire database in far less than n? operations. The
exhaustive matching thus implemented required only
4045 days of central processor unit time obtained over 19
weeks in the background obtained from up to 6 work
stations running in parailel (Gonnet o al.. 1992).

The procedire detects all significant matehes within the
database. regardless of where in an entry the matched
sequence might lie. Significant matehes of sequences
within the same entyy (as would be produced. for
example, by internal repeats within the same sequence),
significant alignments of partial sequences. and significant
alignments between different parts of a single protein and
segments of 2 or more different proteins (as might be
produced. for example, by domain shuffling) are all found
by this approach.

The matrix from Davhof ef al. (1978) and standard gap
penalties were used in the first phase of the exhaustive
matching. A liberal target score ensured that every mateh
with potentially significant sequence similarity was exam-
ined. The initial matching yelded 64 million matehes with
an aligned similarity score of 80 or better. These were
then refined by running the dynamic programming algo-
vithm from the point where each match began in one
direction along the sequence alignment to the point where
the alignment  was  optimized (or the sequences
exhausted). running in the reverse divection to achieve the
same goal. and repeating the process until the alignment
score was no longer improved. After refining, 17 million
matches remained. each optimally aligned. These matches
were then used to caleulate new Dayhoff matrices (Gonnet
el al.. 1992}, which then provided new scoring parameters
used to refine further the matches to self-consistency.

The most probable evolutionary distance between each
pair  of matched sequences was then computed.
Evolutionary distance was measured in PAM units. indi-
cating the number of accepted point mutations per 100
amino acid residues separating the 2 sequences. Thus, 2
protein sequences 1 PAM unit distant differ by 1 accepted
point mutation per 100 amino acid residues. The matrix
describing the probability of pairwise matches between
the 20 amino acid residues in this alignment is referred to
as the ~ 19 mutation matrix™: the sum of the off-diagonal

terms of this matrix is 1%, For 2 sequences separated by
u PAM distance of z, the highest probability of obtaining
the second sequence from the first occurs after x trans-
furmations of the first by the 19, matrix.

(by A databuse for building an empirical model
Jor deletions

Ta be useful in modelling deletions and insertions
during divergent evolution, matches must meet the
following criteria.

(1) The gaps being analysed should reflect bona fide
indels during divergent evolution, not recording or experi-
mental errors. Further, identical sequences represented
more than once in the database should not be compared.
Statistics were therefore compiled from protein pairs at
least 47 PAM units distant. This avoids counting dupli-
cates within the database, as well as most of the cases
where gaps arise from errors in the entry of closely related
sequences. A sample of the data was examined by hand to
ascertain that recording errors were not likely to influence
significantly the empirical model derived from the
remaining matchest.

(2) The sequences being compared must be indispu-
tably homologous and the alignment relating them of
high quality. This is necessary so that the gaps being
counted can be reliably attributed to real insertion and
deletion events during the evolutionary history of the 2
proteins and not to artifacts created by poor or fictitious
alignments. To this end, the alignments used in this study
were between sequence pairs less than 100 PAM units
distant that achieved a similarity score greater than 150
and extended for more than 80 residues. These criteria
reduced the total number of matches to 411,000, These
criteria maintain a useful sample size, but are more than
adequately conservative to guarantee that gaps scored lie
within significant alignments.

(3) It is interesting to learn how the frequency and
length of gaps between protein pairs depends on the
evolutionary distance between those pairs. Therefore,
data must be collected separately for protein pairs at
different PAM distances, PAM windows (illustrated
schematically in Fig. 1) were therefore defined by an
upper PAM bound (p in Tig. 1, defining a “connected
component”) and a fower PAM bound (g in Tig. i)
Specific values for these PAM windows are collected in
Table L

(4) Within each PAM window, insertion and deletion
events occurring during divergent evolution should be
counted only once. Therefore, in comparing 2 connected
components joined by a bridge between PAM limit g and
PAM limit p (Fig. 1), in cases where the tree has sub-
branches below ¢, only a single pair of sequences from

t Tuspection of the data shows that some long
deletions are due to events that are not properly
modelled by the assumptions used here, Most trivially.
thix includes recording leatures of the database. e
single entries that contain multiple fragments that.
when paired against complete sequences, yiekl gaps.
Also. at low PAM distances, a significant number of
long deletions appear to result formally from
simultancous deletion replacement events. These require
treatment by a more sophisticated model not discussed
here. To prevent these {rom having an impact on the
interpretation presented here, eqn (11) was derived from
sequence pairs at distances greater than 10 PAM units
and gap lengths shorter than 60 amino acid residues.
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Figure 1. Sampling matches to avoid redundant
counting. of indels. The 1-7 million matched sequence
alignments allow the division of the sequences in the
database into connected components defined by an upper
PAM bound, indicated by the upper line (p} in this
diagram. Data are tabulated in sets drawn from pairwise
matches in different PAM windows defined by an upper
bound and a lower bound (the lower line g). A, B, C (a
single sequence) and D. These sequences may, of course,
be connected by matehes at higher PAM distance (the
broken line connecting B and C). However. because all
possible matches within the database have been recorded
during the exhaustive matching, it is guaranteed that any
match connecting any of the 4 components will oveur at a
PAM distance higher than p. For the PAM window
defined by p and ¢, only one pairwise alignment within
-the sequences defined by A (e.g. between sequence a; and
sequence a,) will be tabulated; tabulating an alignment
between sequence a, and sequence as as well would be
redundant.

each sub-branch is compared. The set of protein pairs for
each PAM window (Table 1) contained a reasonable
sample size of approx. 250,000 aligned positions. The sets
are available in electronic form to interested individuals.

3. Results

Gap length and frequency data for the entire
protein sequence database were colleeted in
different PAM sets. A summary of the data collected
for each group is compiled in Table 1. These data
were used first to develop descriptive mathematical
functions and then structural models that best
account for insertion and deletion events during
divergent evolution.

(a) Cap length distribution

Table 2 collects data concerning the number of
gaps of specified lengths in aligned pairs of protein
sequences obtained at different PAM values. These
data were examined to identify descriptive mathe-
matical functions, beginning with exponential func-
tions. Exponential functions are widely presumed to
describe gap length distribution in aligned protein
sequences. In particular, the linear penalty function
(ak+b), used as a standard default in most align-
ment programs, presumes an exponential distribu-
tion of gap lengths.

According to an exponential distribution, the
probability of a gap of length £ is:

u-pr )

Py =

where o is the probability of an insertion or deletion
event, and f is the probability of removing an”
additional amino acid residue once a gap is formed.
The logarithm of the probability, the value used in a
dynamic programming alignment, is given by the
equation:

log pi = log {a(1 — )+ (k—1)log B. (2)

Tor example, a gap penalty parameter of 12 and the
increment cost parameter of 4 in a typical alignment
program correspond to a value of 0-1048 for «, and a
value of 0-3981 for f.

Inspection of the data in Table 2 shows that an
exponential description of the gap length distribu-
tion does not provide an adequate fit to the data.
Three separate observations illustrate this. First, for
an exponential distribution,- the ratio of successive
probabilities is a constant:

P12 = Pafps = PafPa= ... Pi/P{H =1/B. (3)
Similarly:

PilProx = PafPrsx = PalPas

=...plpis= 1B )
If the gap length probabilities follow an exponential
distribution, then the observed frequencies (N})
should also follow these relationships. They clearly
do not. For example, for the set of data collected at
a PAM window of 29-5 to 40, we can compute from

Table 2:
NN, =260 N,/N,=147
N,INg=260 Ng/No=266

Ny/Ng=112
) 5/ 6 . (5)
Ny N 5= 143,

The values in neither row are constant as required
by an exponential distribution.

A second more powerful demonstration of the
inadequacy of an exponential fit to account for the
gap length distribution is provided by an analysis of
the tail of the distribution. A significant number of
gaps of length 61 and longer is observed in Table 2
in all PAM windows. For example, in the window
defined by PAM 295 and PAM 40 as lower and
upper bounds (using data from the MIPS database),
the conditional probability of having a gap of length
61 or longer is:

LS = (6)
PR LT T
B must be approximately unity (or, more precisely,
0-916) to account for these data. This is inconsistent
with the f§ required to account for the length distri-
bution for shorter gaps. For example, with gaps of
length one and two, which account for more than
half of the total number of gaps, No/N = i = 0-393,
again using data from the window defined by PAM
295 and PAM 40 as lower and upper bounds
(Table 2). In other words, the tail of the distribution
is too long and its initial decline too steep for both
to be accounted for by a single exponential
distribution.

A third illustration comes from estimates for the
parameters in a hypothetical exponential distribu-
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Table 2
Lengths of gaps in alignments of matched sequences at various PAM distances

PAM window

Low bound +7 64 87 118 160 217 205 40-0 54-3 737
Upper bound 64 817 118 160 217 29-5 400 543 131 100

Gap length

1 182 211 269 331 450 G610 796 1038 1276 1406
2 61 85 93 89 196 236 313 451 580 672
3 20 15 70 86 148 159 231 208 350 379
+ ia 45 a3 53 87 97 162 202 233 263
3 22 32 34 38 85 56 83 135 161 174
6 20 20 28 30 42 57 85 109 108 122
T 10 20 23 25 29 44 53 7T 84 91
8 11 20 20 18 16 39 54 30 63 6
9 4 21 17 8 34 30 31 51 37 52
14 8 It 12 9 21 28 40 © b 40 40
1 7 10 i ] 1 19 29 39 32 34
12 i) 9 12 1 19 18 13 21 22 15
13 i 8 3 3 6 13 19 16 21 20
1+ 3 3 8 5 7 14 8 b4 23 19
15 4 7 6 4 9 8 20 il 8 16
i 3 4 4 2 3 4 12 13 6 13
4 5 4 2 10 9 13 D o 1o
3 i 1 3 H 9 14 3 10 i3
i 3 8 5 4 8 9 N 8 7
3 3 It 2 6 6 4 6 9 2
i 3 2 2 3 1 b 8 [ 3
22 0 3 3 0 3 3 [} 1 5 5
23 0 3 0 1 0 3 1 3 6 4
24 ] 1 4] 0 3 4 2 4 2 4
25 1 2 0 0 i 5 3 1 I 4
26 2 4+ 2 2 4 3 3 3 3 1
27 i 1 2 0 4 2 3 2 2 i
28 0 1 0 2 3 0 0 + I 2
24 1 2 2 0 i i 0 4 0 2
3u i 4 3 2 1 3 i 3 i +
31 3 2 2 3 { 0 2 2 3 3
32 1} U 2 i i 4 3 2 1 +
33 1 1 0 1 1 4 a 1 l} 0
34 0 [4] 2 i 1 3 0 3 ! 0
35 3 [ [} i 3 i 2 u O i
36 G i 2 0 ] 0 5 i 1] 1
37 1 [1] 0 I 2 4] 0 3 0 1
3 3 1 1 i 2 0 0 2 i i
34 1 0 U 0 0 3 2 V] 2 0
40 u 0 i 0 5 i i 1 ¢ 0
41 [} 2 2 0 3 i} 1] 3} t [}
42 0 i [\ 0 0 ¢ o 0 ] 1
43 0 0 [} i} 1 1 0 ) 4] i
44 1 0 i [} i 0 0 i o 0
43 ] 0 I [} 0 2 ] u 2 4
46 [} 0 0 [ 0 ) a i i 3}
47 0 i} [} 0 | o O 0 I8 ]
48 I 0 [} 4 1 1 I 5] ) [§]
49 0 0 0 1) i ¢ 1 3 i [}
St 0 i 0 1] i 0 i i 0 0
51 0 0 [} 4 1 0 0 1 i} 8]
52 0 0 0 U [} i 0 ) 4 i
a3 0 0 [} 0 0 O 0 0 0 0
34 0 0 0 L] 0 0 0 0 [} 0
35 i I [} 0 0 [ 0 0 0 )]
56 1 i 0 0 0 0 0 o o 0
a7 ] 0 0 [} o 0 ] i 0 0
a8 1] i a 4] 0 0 0 (4] 0 0
34 o 0 2 ) 1 0 0 1} [} 2
6t} [} 0 1 1] 1] 4] I i 0 1
G1-70 2 [§} 4 0 3 2 2 ) 3 3
71-80 v 2 1 0 i 3 0 4 + i
81-90 0 3 0 0 ] 2 2 i} 2 1
91-100 0 ] 2 1 ] [} i 1 4 t
> 100 3 4 2 i @ 1 6 [} 2 2
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Table 3
Estimates of the parameters for a hypothetical
exponential fit to the gap length distribution

Table 4
Fit of a Zipfian distribution lo dala from aligned
homologous sequences

Gap range — 1l log B : Q
=20 1313 - 1039
40 1076 — 1598
1-60 1-036 — 1782
(-] 0-896 —204-5

¢ the parameter from the hypothetical linear gap penalty
expressed by egn (1) describing the ratio of probabilities of a gap
of length (k) and a gap of length (B+1). Q iz a maximum
likelihood estimator of the quality of the fit of the exponential
function with the specified B to the data in the specified gap
range, More negative values of @ indicate n'worse fit.

tion. This is done for four sets of data drawn again
from PAM window 29'5 to 40 in Table 2, first for all
gaps shorter than 21. the second for all gaps shorter
than 41, the third for all gaps shorter than 61, and
finally for the entire sample. These sets maintain
significant sample sizes, include overlapping data,
vet vield remarkably different values for f
(Table 3).

It is. of course, possible to approximate the data
arbitrarily well by a larger number of exponential
functions (Demchuk el al.. 1989). However, it
proved to be more productive to search for an
alternative mathematical description to account for
the gap length distribution. The data in Table 2
turned out to fit remarkably well a generalized Zipf
law (Gonnet & Baeze-Yates. 1991), where the
frequency of a gap of length / is proportional to k?
{eqn (7)):

frequency of gap = mk=0. (7)

Columns 8 and 5 of Table 4 show the expected
values for the distribution and the cumulative
counts when 8= 17, applied to the data from PAM
window 29-5 to 40 {Table 2). A Zipfian distribution
with an exponent of 17 approximates quite closely
the observed gap length distribution. In other
words. the probability of a gap is inversely propor-
tional to the length of the gap raised to the 17
power.

Zipfian distributions with an exponent of 2 or less
have infinite first and second moments (Gonnet &
Baeza-Yates. 1991). This means that for any finite
sample, the estimated mean and estimated standard
deviation can be arbitrarily large. This is consistent
with the empirical observation that the mean gap
length has an abnormally large standard deviation
in various samples of the data examined.

The parameters of the Zipfian distribution were
found to be largely independent of the PAM
distance of the pairs of proteins being examined, as
summarized in Table 1. The only trend is to moder-
ately shorter average gap lengths at longer PAM
distances, although the sample size at low PAM
distance is sufficiently small to make this trend less
statistically significant than Table T might make it
appear. In any case, the data eliminate the conjec-

Cumulative
Gap Number of  Approxi- number of  Approxi-
length  oceurrences mation occurrences mation
796 677 7496 kil
313 3896 1109 11573
231 2184 1340 13757
162 1502 15119
83 1585 16041
85 1670 1670-2
53 1723 17200
54 1777 17586
31 1808 17895
40 1848 18147
29 1877
13 1880
19 1909
18 1927 18818
20 1947 1893-2
12 1959 18034
13 1972 19123
4 1986 -
9 1995 19276
4 1999 19341
a 2004 1940:0
6 2010 $454
7 2007 -
2 2019
3 2022 19591
3 2025 1863-0
3 2028 1966-6
i 2029 1976-0
2 2031 19788
3 2034 1981-3
5 2039 19838
2 2041 19882
) 2046 B2
2 2048 19457
1 2048 19974
I 2050 20081
t 20561 2009-3
1 2052 2010-3
1 5 J
1
i
i
i
1
[
i
i
1 2062 20448
1 2063 2052:3

Data drawn from the MIPS version G4 database and tabulated
for 60.966 matches lying between PAM 205 and PAM 40 found in
845 connected components. ldentification of single malches
between connected components yielded 2679 suitable matches.
Columns 3 and § show the expected values for u Zipfinn
distribution (egn (7), see the text) and the cumulative counts
when = 1-7.

ture that, as a rule, gaps enlarge over evolutionary
distance. Further, they imply that insertions and
deletion events oceur with a particular probability
distribution and, once the event has occurred, the
probability of subsequent insertion and deletion
events in the sample position is not greatly different
than in the protein generally.
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Table 5
Distribution of amino acids in and arownd gap

1 \f 2 21 3 3f 4 4if 5 5if [ 6/f z z

A, PAM bounded between 118 and 16
55,730 matches read of which 55,730 were within given bounds; 695 connected components with a suitable match out of 3816

Ala 10-01 133 908 120 1076 1-42 874 116 T 1-03 908 120 842 12
Arg 534 105 414 0-81 3-63 071 363 o7l +81 095 441 0-87 498 98
Asn 561 1-30 454 105 551 128 484 112 481 1-11 401 0-03 402 093
Asp 574 |38 404 096 551 107 470 091 3-60 070 401 078 518 100
Cys 147 079 107 0-58 1-34 072 1-34 072 067 0-36 0-67 038 0-86 46
Gin 628 1-51 507 1-22 672 162 51 123 668 161 561 1-35 569 1-37
Glu 587 094 6-01 0-96 618 099 672 1-07 587 094 521 0-83 531 0-85
Gly 935 126 1068 144 847 114 1129 1-07 12:28 166 12:15 1-64 10-08 1-48
His 1-87 083 2-80 1256 2:02 080 242 108 2:80 1-25 334 149 235 1-05
{le 2:40 044 2:00 0-37 309 0-56 228 042 +14 076 334 0-61 420 077
Leu +81 052 507 055 444 048 591 064 761 083 6-68 073 650 (U]
Lys 467 079 +67 079 524 0-8% 511 0-87 374 064 441 075 470 080
Met 134 060 2-80 125 094 042 2-28 102 120 0-54 227 101 1-85 083
Phe 2:14 053 334 0-83 161 040 2-96 014 240 060 2-80 070 339 84
Pro 854 1-63 895 171 8:60 164 699 1-34 868 1-66 708 135 771 147
Ser 10-81 156 1028 149 12:50 181 128 163 841 122 814 118 804 1-16
Thr 428 1-07 587 100 685 17 578 098 414 1-05 681 16 617 [R5
Trp 067 0-50 0-80 0-59 067 0-50 040 030 053 039 0-53 039 083 w6l
Tyr 2:94 092 3-34 1-03 2:55 078 363 112 334 1-03 347 107 306 U-94
Val 3-87 059 454 0-69 323 0-49 430 066 $41 067 601 092 572 U87
Unk 0-00 0-00 013 027 [R) 0-00 003

F.M.S. 2:07 106 239 1-89 183 164 1-36

B. PAM bounded between 16 and 217
77.408 matches read of which 77,408 were within given bounds; 753 connected components with a suitable match out of 3707

Ala 10:03 1-33 801 1-18 10-16 1-35 917 121 @15 121 9-23 122 @156 121
Arg 5323 1-03 466 092 459 090 459 090 4-82 095 4-08 080 435 86
Asn 400 093 474 110 410 095 491 114 359 083 351 0-81 364 U4
Asp 6-94 134 448 089 647 125 516 100 +17 081 460 000 +28 +83
Cys 123 066 131 071 1-23 0-66 106 067 114 062 1-39 075 141 w76
Gln 449 108 629 1-52 442 107 639 1-54 +98 1-20 588 142 139 178
Gl 776 1-24 882 141 770 123 9-01 144 768 1-23 7-35 117 706 1113
Gly 891 120 10-87 147 958 129 10-81 146 1-69 1168 ki 134
His 1-96 -88 131 0-58 1439 062 139 0-62 081 212 -t
e 302 055 048 270 0-49 270 049 072 343 063
Leu 490 0-53 0-53 549 0-60 415 0-52 588 0-64 637 672 w73
Lys 572 087 1-13 614 104 647 110 449 076 482 82 +98 85
14 (U5 066 123 085 164 073 1-55 0-69 1-80 080 161 w72
237 059 055 051 1-88 47 1-80 045 172 043 227 v-36
874 147 134 150 590 113 168 817 301 133
809 117 1-51 136 1188 172 1-23 718 818 1-18
71t 121 092 131 549 094 801 1-36 7-60 506 112
057 042 49 0-36 o-61 41 0-30 U-57 42 1-06 104 w7l
Tyr 2-33 078 237 073 081 2-38 073 188 958 253 231 vl
Val 515 079 +74 072 066 393 0-60 507 o717 539 0-82 511 (USR]
Unk 908 25 008 ot oot -0
.S, 1.75 1.98 248 194 173 157

C. PAM bounded between 217 and 29°8
105.038 matches read of which 105,933 were within given bounds; 723 connected components with a suitable mateh out of 3574

Ala 933 124 1078 143 499 1-46 103 146 1032 137 953 126 504 106
Arg 447 0-88 520 104 +60 001 408 0-80 447 [18:.] 473 093 +51 1rgf
Asn +88 116 342 079 493 14 440 102 381 0-88 440 102 +51 1-04
Asp 565 109 506 0-98 625 1-21 513 089 +93 095 538 M 31 103
Cys 1112 061 1-38 075 085 046 1-38 075 072 0-39 138 075 108 (€31
Gin 5568 134 552 133 592 143 585 141 508 144 585 141 4§16 48
Glu 742 119 762 1-22 7-10 113 768 123 585 093 539 086 671 197
Gy 1097 1-48 10-71 145 1019 138 1032 139 170 158 1130 1-53 981 133
His 342 153 210 094 2:63 117 237 106 1497 088 71 [ 222 099
te 269 049 2:83 052 270 049 210 038 264 Q44 2506 047 (4]
Leu 631 69 565 061 539 059 618 67 4-96 076 716 (78 Wil
Lys 572 047 545 096 565 o96 598 102 604 103 494 U8a : 1ol
Met 118 053 2 050 105 047 18 053 1G4 073 177 146 67
Phe 2:23 -85 315 0-78 2-56 0G4 237 0548 062 210 275 w8
Pro 802 163 4G4 127 796 152 657 126 1-50 834 808 54
Ser 808 17 867 1-25 207 131 109-59 153 1-01 742 107 84l 122
The 565 096 508 1:02 618 105 513 0-87 T2 i) IRt 634 108

Trp 59 44 053 039 0-46 034 039 029 1-05 078 131 007 -1 82
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Table 5 (continusd)

1 VS 2 24f 3 3if n sf 5 s/f 6 s/f z zif
Tyr 1-58 044 264 83 " 210 065 237 ) 197 061 217 067 2:50 o7
Val +86 074 486 074 421 064 487 T4 572 087 552 084 513 078
Unk 013 0-39 020 000 000 000 000
rin.s. 70 1-69 1-82 1-89 171 164 1-38
D. PAM bounded between 295 and 40

146,609 matches read of which 146,609 were within given baunds: 7535 cxnnected components with a suitable match out of 3446

Ala 829 110 742 0-98 824 109 14 853 113 742 098 828 110
Arg 528 104 4490 096 509 100 31 451 088 494 097 479 094
Asn 499 P16 533 1-23 548 127 120 303 091 436 1-01 441 02
Asp 587 108 577 112 620 120 (R4 +07 079 446 0-86 457 0-88
Cys 1-6a -89 1-65 089 1-60 86 76 0-82 044 I-4] 076 137 974
Gln +75 14 +85 17 485 by 553 1-33 519 125 577 139
Glu 746 114 7-80 1-25 761 122 601 096 511 092 6-50 104
Gly 10-42 331 10-37 1-40 969 1-31 170 12:55 170 [RR:T Gl
His 2:04 0-91 213 095 1-84 82 102 242 1-08 220 098
Tie 3-30 060 364 067 30 35 66 2491 083 348 u63
Leu 572 0-62 577 063 485 w33 60 064 603 66
Lys 1-20 703 1-20 688 by 100 a3} 104 526 39
Met 069 1-26 056 1-50 067 1-89 08+ 1-89 084 1-49 u67
Phe 57 3 0-58 213 33 271 067 320 O-80 276 069
Pro 1-36 640 1-22 6 1-48 805 154 790 1-51 908 74
Ser b5 &89 143 974 b4l 90 INE] 785 I-14 7-88 B14
Thr 425 1-06 591 101 625 106 6-30 107 587 1-00 a7 93
Trp 087 064 018 058 073 [USH) 073 054 042 068 096 (G
Tyr 199 061 2:13 0-66 204 063 242 074 2:57 079 2-57 079
Val 446 068 4566 070 451 69 679 104 640 098 522 080
Unk 000 010 000 0-00 000 000
IS, 1-58 1-57 175 176 167 172

E. PAM bounded befween 40 and 75
210384 matches read of which 218.384 were within given bounds: 748 ciunected components with a suitabl

Thr
T
Tyr
Val
Unk

r.nes,

F. PAM bounded between 34-3 and 737

333.060 matches read of which 333,060 were within given hound

Ala
Arg
Asn
Asp
Oys
Gln
Glu
Gl
His
lle
Leu
Lys
Met
Phe
'ro

1-00
114
0-87
bt
88
1-33
105
125
0-36
U635
068
1-20
Ui
U7
1-60
123
1-03
033
074
085

1-89
3-66
G40
492
144
266
695
047
G669
0-63

705 093 T4
164 o9t 460
439 o2 +52
419 1-20 G-60
136 74 77
449 1-08 11
692 111 476
8H 120

234 BO4

423 077

727 79

42 26 0

I 079

398 089

6749 130

0-92 9 1ot
089 +88 a9
121 503 1-16
111 66 1-09
62 141
119 329
112 699 112
137 406
-84 1-70
67 E
070
1-18
064
0-66
133
137 1003 143
114 670 1-14
047 052 w34
070 189
073 440 iy
004
159

09 812 1-08

5

84

1118
P28 123
496 Gt
099 u-83
1-08 -1t
1117 112
080 240 107
165 370 U6
086 657 071
106 724 123
076 1-58 o071
079 320 82
135 495 133

L
35
30
Y
54
7
e
38
Rpt]
53
Y
18
w33
58
L4
o368

e

47
il
17
it
)

15
11
2
Las)]
102
]
D]
133

462
+81
+55
533
1-07
4436
669

10-39

203

47
584
178
370
339
710
618

[
123

G-22
a8

53
114
344
T84

88
U85
03
03
53
20
107
140
091
0:34
0-81
099
079
092
1-60
1-03
[R5
U355
{88
45

754 100
+77 094
+47 103
562 1-09
00 004
433 04
662 106
@87 133
214 096
362 0-66
717 0-84
5717 098
203 091
351 87
82 157
677 098
377 048
078 058
3H 086
429 096
000

106

087
096
094
i-15
082
081
083
140
B2l
069
0-84
113
0-b5
0-81

165

657
490
404
504
1h2

e match out of 3219

T8 (U251
498 098
465 1-08
542 1-03
i1 439
+85 1T
713 114
971 1-31
191 [$3:51
362
718 [E3r-
72 97
171 76
289 w2
16
1-20
1u7
90 67
-88 -89
592 IS
00

124

) annected components with a suitable match out of 2841
82
102
088
-1

744 049

&35 U9

440 [-02

68 10

149 81

+33 1-04

6568 U7

892 121
4 103

375 O0-64

317

585

177

310

702
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Table 5 (continued)

i Hf 2 2l 3 3y 4 4 5 Sif 6 6 f Z Zif
Rer 121 S04 1-29 864 [R1Y] 1er24 48 679 48 603 a7 108
Thr 8¢ 48 110 G-22 106 86 17 G4l 109 588 [RL] 08
Trp 065 4 084 082 61 045 070 114 0-84 [ R 084 079
Tyr 090 212 0-65 284 087 77 054 357 10 351 105 093
Val 072 +468 071 483 074 550 084 (L] U991 G-51 049 85
Unk 054 003 003 (H3 000 03
rams 108 126 120 165 124 98
;. PAM bounded between 737 und 100

5244639 matches read of which 524,639 were within given bounds; 708 connected components with a suitable mateh out of 2573
Ala 681 90 675 0-89 736 007 773 102 649 U-86 515 [ 673 u-89
Arg +80 94 471 0-93 489 (96 17 102 i) 091 A tul i -85
Asn 448 108 506 17 580 134 80 i34 +43 103 +17 ouv 106
Asp 8§52 126 647 125 4064 128 a2 107 624 121 583 113 114
Cys 167 080 70 092 109 54 104 0-89 1-41 074 il [ )
Gin 414 100 3-88 093 3-85 0493 431 04 143 108 41 G- [RLY]
Gl 713 14 6:58 1-05 721 15 G-87 110 G2y 100 G464 os 07 1-13
Gly 891 120 908 123 802 o8 8749 114 [{taet 137 =30 901 122
His 24 108 2-59 2:67 119 2407 0492 1 494 I-1n 231 3
He {81 405 368 067 $11 o1h $a2 70 +08 ( 14 ¢76
Leu 080 750 6:58 072 747 08l 8§42 o-87 842 a2 T8 U85
Lys 123 698 398 [N 3] 667 13 637 117 687 117 467 1113
Met 0-59 152 0-68 1118 053 193 088 2:2%7 1ul 180 080
Phe (+88 322 80 244 074 376 94 307 [l 334 U-83
Pro 1116 545 14 T-04 135 7 140 4o 20 138
Ser R3] 905 1-31 845 122 ] U85 G406 (i) 687 101
Thr 108 655 112 518 098 504 u-87 549 04 574 0-98
Trp 090 042 (68 104 o-81 1 1439 o2 124 096
T, 87 ) 83 236 073 378 1-16 [ 34 4
G706 2 981 +47 w76 334 8311 G0l ua 536 32

Unk 000 40 tremk 000 G-00
rans. 15 [R5 Tuy 089 -84

Collected from the MIPS Version 64 database. Entries indicate the frequency of oceurrence of the designated amino
designated position, and this frequency divided by /. the frequency of occurrence of the designated amino acid in the databas

acid at the
a

whale. These frequencies are given in Table 7. Unk is unknown amino acid. Entries at positions in the insert and flanking regions detined

beluw:

CXXXE_. .

2XXX. ..

LYY YISLZLZZGAYYY L

(by Probability of a gap as a function of
evolutionary distance

As is evident from the data in Table 1, the prob-
ability of an indel increases with increasing PAM
distance. The relation is linear only at short PAM
distances, however. Equation (8) fits these data as
an exponential (ZAx? = 2:2):

indeljamino acid = 00224 —0-0219

x exp (—00102-PAM).  (8)

A remarkably linear relationship exists, however,
between the average number of amino acid residues
between indel and the rveciprocal of PAM distance
(% 100. Fig. 2), which represents the average amino
acid residues per mutation. Extrapolating this
velationship to the y axis, representing the point
where the protein pairs have accumulated an
infinite number of accepted point mutations, yields
an intercept of 30 amino acid residues. This result
suggests (vide infra) that segments of proteins on
average 30 amino acid residues in length remain
undisrupted by divergent evolution even after
extended periods of time. Extrapolation of the
exponential approximation yields an undisrupted

unit approximately 40 amino acid residues in
fength.

(¢) Computing the probability of a yap and a yap
penalty for aligning sequences

These observations can be combined to yield an
equation for computing the probability of an indel
of length k. and the corresponding penalty that
should be assigned to the gap of this length when
found in an alignment of two homologous protein
sequences. Assuming a linear dependence of gap
probability on PAM distance (accurate only at short
PAM distances;, this equation is:

Probability{indel of length ISR PAM/E (9)

Tn a typical dvnamic programming alignment. costs
are traditionally expressed at ten times the loga-
rithm (base 10} of probability. Conforming to this
tradition, the cost of a gap in an alignment is
expressed by the following formula:

Cost{indel of length &} = ¢, + 10

log o (PAM)—17-log (k). (10)
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Table 6
Normalized distribution of amino acids in and around gap as a function of PAM distance

Position relative to the deletion

Amino acid Mid PAM 1 2 3 4 5 6 ¥4
Ala 13:9 1-33 1-20 142 1-i6 1-03
Ala 18-85 1-33 118 1-35 121 121
Ala 256 124 143 146 146 1-37
Ala 3475 110 098 109 1-14 113
Ala 4715 1:00 092 106 106 0-88
Ala 640 093 095 1-08 097 082
Ala 8685 080 0-89 0-97 102 0-86
Arg 139 105 081 071 071 095
Arg 18-85 1-03 092 0480 080 095
Arg 256 0-88 104 091 080 088
Arg 3475 1:04 096 100 081 0-89
Arg 4715 I'14 0-99 096 085 495
Arg . G40 091 096 0-89 0-04 102
Arg 86-85 094 093 096 1-02 091
Asn 136 1-30 1-05 128 112 111
Asn 1885 093 110 095 14 0-83
Asn 256 116 079 114 1-02 088
Ash 3475 116 1-23 127 1-20 091
Asn 1715 0-87 1-21 1'16 1-30 105
Asn 640 102 105 118 117 0-88
Asn 8685 108 117 134 1-34 1-03
139 (R 096 Bo7 091 070
18-85 1:34 125 100 U8l
256 1-09 121 099 095
3475 108 120 117 079
4715 P14 09 110 103
640 120 123 119 P10
3685 26 28 107 1-21
13-9 079 058 072 072 0-36
066 U7l 066 057 062
061 075 046 075 -39
089 -39 0-86 076 04
088 062 076 0-54 058
074 0-96 060 000 075
0-90 0-92 059 -89 076
151 22 i-62 123 161
1-08 152 107 i-54 1-20
134 33 143 141 b4
114 117 17 1-35 133
133 118 127 127 120
108 099 085 097 092
00 093 003 FU4 108
094 096 099 07 004
124 141 123 144 123
119 122 13 123 093
119 125 1-22 1-27 096
105 112 112 16 107
Bl 1-08 -1t 12 1-01
14 1-05 115 1o 100
Gly 126 44 1-H4 7 1-66
Gly 1-20 147 1-29 46 1-69
Gly 148 45 138 1-39 158
Gy 141 i-+0 131 45 [ Rri}]
Gly 125 137 122 138 140
Qly 120 117 2 b 40
Gly 120 123 108 119 1-37
His 083 125 090 108 125 149 1K
His 088 0-58 0-62 062 091 085 [N E3
His 1-53 084 17 1-06 088 076 0499
His 091 085 082 o0l 1-02 108 98
His 86 084 76 0-89 001 LRt 85
His 04 090 vo7 101 093 4] 1-05
His 108 11§ 19 0492 (3141 [R1Y] 1-03
e U444 37 056 42 076 -Gt w17
Ite 055 048 044 049 072 63 U3
e 0-49 052 [12:33) 038 U449 047 L4
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Table 6 (continued)

Position relative to the deletion

Amino acid Mid PAM 1 2 3 4 5 6 Z
Tle 3475 0-60 067 055 064 0-66 53 063
ile 47-15 0-65 067 0-60 053 059 0-66 066
e 640 077 0-65 0-68 062 072 069 0-69
e 86-85 081 074 067 075 070 075 076
Leu 139 0-52 055 048 064 0-83 073 (1Y)
Leu 18-85 053 053 0-60 0-52 064 069 073
Leu 256 069 061 0-59 067 076 0-78 0T
Leu 3475 062 0-63 053 062 0-60 064 u-66
Leu 4715 0-68 0-70 0-67 069 081 -84 o178
Leu 640 079 086 074 019 094 084 080
Leu 86-85 080 0-82 072 0-81 0-87 092 085
Lys . 13-9 079 079 089 087 64 075 0-80
Lys 18-85 097 113 104 1-10 076 082 085
Lys 256 091 096 096 102 1-03 0-85 1-01
Lys 3475 120 1-20 17 114 1-00 1-04 089
Lys 4715 1-20 118 112 118 099 098 097
Lys 640 1-26 1-06 123 1:02 0-94 1-13 089
Lys 86-85 1-23 119 119 1-13 117 117 1-13
Met 139 060 125 042 1-02 054 10t 83
Met 18-85 051 066 065 013 0-69 0-80 072
Met 256 053 0-50 047 053 073 079 67
Met 34-75 0-69 056 67 0-67 -84 084 67
Met 4715 046 0-64 0-58 038 079 001 076
Met 640 079 076 O71 071 0-78 055 o719
Met 8685 059 062 0-68 053 0-88 101 080
Phe 139 0-53 0-83 40 074 06O 070 -84
Phe 18-85 0-59 0565 0-51 047 043 043 056
Phe 256 -85 078 0-64 0-59 062 052 U8
Phe 3475 087 058 053 057 0-67 080 U469
Phe 4715 075 0-66 068 0-68 092 0-87 072
Phe 44:0 099 079 082 068 0-86 -8t o717
Phe 86-85 088 084 0-80 074 094 0-99 083
Pro 139 1-63 71 1-64 1-34 166 1-35 47
Pro 18-85 167 134 150 113 1-a8 156 1-53
Pro | 256 153 1-27 1-52 126 1-56 159 P54
Pro 3475 1:56 1-22 148 124 154 1-51 74
Pro 4715 1-60 133 160 140 1-64) 157 60
Pro 640 1:30 1-35 133 133 [-50 165 at
Pro 8685 16 123 INES 135 140 1-38
Ser 139 1-56 1-49 1-81 163 118 IR 1Y
Ser 18-85 117 151 1-36 172 104 1118
Ser 256 117 1-25 131 1-53 1-01 107 122
Ser 3475 I-15 1-43 1-41 148 114 114 114
Ser 4715 123 1-37 145 1-36 1-03 098 120
Ser 640 1-21 129 140 148 148 087 1-09
Ser 86-85 i1l 1-07 1-31 122 085 019 1-01
Thr 139 107 100 17 088 105 b6 05
Thr 1885 121 092 131 094 1-36 129 112
Thy 256 096 102 105 087 112 119 108
Thr 3475 106 101 06 093 1-07 1-00 093
The 4715 1-03 114 114 1-02 -ud G098 7
The 44+0 089 10 106 117 108 1-00 1-05
- Thr 8G-85 1-08 1-01 112 098 087 U4 08
Trp 1349 050 059 0-50 030 039 0-34% [iX33}
Trp 18-85 42 0-36 61 030 042 79 o177
Trp 254 044 039 U334 029 078 097 82
Trp 3475 0G4 058 054 047 (68 [
Trp 4715 033 047 039 @50 [128. 047
Frp 640 065 0-84 061 070 084 079
Trp 86-85 090 085 068 081 102 1240
Tyr 139 092 1-03 078 112 03 07 o4
; 18-85 078 073 081 73 (58 78 (g}
256 0-49) 083 {65 73 061 Q67 W77
Tyr 3475 061 066 63 49 H94 79 74
Tyr 4715 074 070 058 o668 88 86 [l
Tyr 440 090 065 087 054 R 108 43
Tyr 86-85 087 0-92 083 73 116 [R5 uid
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Table 6 (continued)
Position relative to the deletion

Amino acid Mid PAM i 2 3 4 5 6 Z

Val 139 059 069 0-49 066 067 092 0-87
Val 18-85 079 072 066 060 077 0-82 078
Vail 256 074 074 064 014 087 084 018
Val 3475 068 070 0-69 066 104 098 080
Val 4715 0-85 073 067 085 095 096 0-80
Vat 64:0 072 071 074 84 001 099 0-85
Val 8685 076 092 81 076 081 092 0-82

Collected from the MIPS Version 64 database. Entries indicate the frequency of vccurrence of the designated amino acid at the
designated position, and this frequency divided by f, the frequency of oceurrence of the designated amino acid in the database as a
whole. These frequencies are given in Table 7. Entries at positions in the insert and flanking regions defined below:

XXX L.

L__9XXX. ..

... YYVY35ZZZZZ64YYY . . .

To fit the data, the constant ¢, must have a value of
—38:08. Adjusting the data to allow the coefficient
of the log,o(PAM) term to vary (to accommodate
the non-linearity of gap probability with PAM
length at longer PAM distances), the cost equation
becomes:

Cost{indel of length &} ~ —35:03 +6:88

- logo(PAM) +17:02-logyo (k). (1la)

The root-mean-square deviation is 07 of data for
the eight sample sets at PAM windows above 87 for
the range of deletions up to length 60. This error is
small, for example, when compared with the entries
in a typical Dayhoff matrix, which range from -8
to +17.

Equation (11) describes a gap penalty that is not
linear in &, the length of the gap. Application of a
non-linear gap penalty to a dynamic programming
alignment is problematic. Therefore, we have caleu-
Jated the best linear fit to equation (11) for routine
use, emphasizing again that such a linear equation
is a less satisfactory approximation than equation
(11} itself. As more than 959, of the gaps are shorter
than 20 amino acid residues, the approximation was
restricted to this range. Adjusting by maximum
likelihood to this range, we obtain:

Cost{indel of length k} = —37-31

+6:88 log, o (PAM)—1-47(k—1). (12a)

To be used in standard alignment routines (at
PAM = 250), equation (12) simplifies to:

Cost{indel of length k}

~ —20-8— 147(k—1). (13a)

These parameters are sufficiently different from
those found as defaults on commonly used align-
ment programs as to warrant their examination in
special cases, although once again we must caution
that a non-linear gap penalty is the only one that is
grounded in empirical data.

To test the reliability of these results, an analo-
gous equation was obtained from data derived from

Version 19 of SwissProt. Further, as inspection of

the data suggested that a primary source of error is
the inclusion of fragments of protein sequences and
precursor as separate entries, any entry with the
word “fragment” or “‘precursor” in the description
fields was automatically excluded before calcula-
tion. The following equations were obtained:

Cost{indel of length k} ~ —3572+ 722

- log,o(PAM) +16-96 - log, o (k). (11D}

A linear approximation of this is given by the
equation (12b):

DelCost(k) = — 3807+ 722 log (p)
“14d(k—1), (12h)
which, at PAM 250, gives:
DelCost(k) = —20-8—1'44(k—1). (13b)

(d) Influence of protein lype on gap
length distribution

To explore whether the exponential parameter 8
of the Zipfian distribution is influenced by the type
of protein, the database was separated into two
classes of proteins, the immunoglobulins and the
non-immunoglobulins, and the length distribution
again examined. Divergent evolution within
immunoglobulins is presumably dominated by func-
tional variation, with deletion-prone splicing a
presumed mechanism. In contrast, divergent evolu-
tion in non-immunoglobulins is dominated by point
mutation, a large fraction of which is (again presum-
ably) approximately neutral (Benner & Ellington.
1088). The rate of accumulation and types of
indels accumulated during divergent evolution of
immunoglobulins and non-immunoglobulins could
conceivably differ for these reasons.

Formulae describing the probability and length
distribution of gaps in the two sets of proteins were
not greatly different. These are shown below
(eqn (14) for immunoglobulins; eqn (15) for non-
immunoglobuling; and eqn (16) for immuno-
globulins and non-immunoglobulins together).
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Table 7
Relative frequency of occurrence of amino acids in
the database

Ala 755 Leu 9-20
Arg 508 Lys 588
Asn Met 224
Asp Phe +02
Cys Pro 523
Gin Ser 691
Glu Thr 587
Qly Trp 135
His Tyr 325
lle Val 656

Cost{indel of length &}, munogtos

~ —20-1 +307[log, o(PAM)] - 17-4[log, ()} {14)
Cost{indel of length &},,nimmunogtet

~ —353 +7-03(log,o(PAM)]— 17-0[log,o(£)].  (15)
Cost{indel of length &}y

~ —36:8 + 7-08[log o PAM)] — 17-0flog olk)].  (16)

The parameter describing the gap length distribu-
tion is remarkably constant (—174, —17-0 and
—170 for the 3 families), suggesting that the gap
length distribution arises from features inherent to
protein structure. In evaluating the other para-
meters of these equations, it must be remembered
that the preponderance of matches within the
immunoglobulin  family is between sequences
separated by low PAM distances, and the number of
deletions examined for immunoglobulins is only
approximately 19, that for non-immunoglobulins.
This is the case despite the very large number of
matches involving immunoglobulins, as the large
number of repetitive matches within the immuno-
globulin tree renders many matches redundant.

(e) Amino acids flanking gap and within the insert

Table 5 shows the probability of different amino
acids being found at positions in and surrounding a
gap, both in absolute terms and after normalization
for the frequency of occurrence of the designated
amino acid residue in the database as a whole (Table
7). Data are again tabulated for gaps appearing in
alignments between protein sequences with different
PAM distances. Table 6 shows a summary of these
data at varying PAM distances by amino acid type,
normalized for the frequency of occurrence of amino
acid residues in the the database (Table 7).

4, Discussion

These results allow the construction of a formal
empirical model deseribing insertions and deletions
during divergent evolution. Tn this model, indels
accumulate over evolutionary time, with units with
an average length of 30 to 40 amino acid residues
remaining undisturbed even after large amounts of
divergence. The probability of an indel of length £ is

proportional to 1/&7%, where 8~ 1-7. This relation-
ship applies over the entire range of PAM distance.
Thus, once created, the indel remains unchanged (or
perhaps is slightly shortened); the region suffering
an indel is nol much more likely to suffer sub-
sequent indels than is the rest of the protein.

These empirical observations are unlikely to need
substantial revision as the database grows. The
empirical laws expressing gap probability were
derived from the entire database; not a subset of the
database. The only sampling biases, therefore, are
those that influenced the selection of proteins in the
database itself. While we cannot exclude at this
point the possibility that empirical laws will be
different in some special proteins (e.g. membrane
proteins or viral eoat proteins), these proteins were
represented in the database used to define the
empirical laws reported here.

We next asked what these empirical laws might
suggest aboul protein structure in general. For
example, the fit of gap probability to the inverse 17
power of the gap length is quite good. Therefore, it
is appropriate to search for a structural explanation
for this empirical fact. In principle, mechanisms
operating at both the DNA level and the protein
level must be considered in explaining the gap
length distribution. Although events occurring at
the DNA level cannot be ruled out as factors
influencing the gap length distribution, one explana-
tion, based on assumptions concerning how natural
selection operates at the level of proteins, proved to
be particularly interesting.

Virtually all entries in the protein sequence data-
base correspond to proteins that are functional in
living organisms. Thus, for an insertion or deletion
event to be represented in the database, it must be
accepted by natural selection, subject to functional
constraints. Like accepted point mutations,
accepted indels are those that maintain the function
of the protein within limits, themselves determined
by the environment of the protein within the host
organism. This implies that indels during the diver-
gent evolution leading to sequences in contem-
porary protein sequence databases cannot have
greatly disrupted the folded structure of the corre-
sponding proteins.

To avoid disrupting the folded structure of a
protein, deletions or insertions generally must
extract or insert polypeptide segments whose ends
are close in space in the folded structure. Prior to
the insertion, the amino acid residues flanking the
insert are joined by a covalent bond, and therefore
must lie together in three-dimensional space.
Conversely, the amino acid residues flanking a
deleted segment must, after the deletion, be joined
by a covalent bond. To obtain such a covalent bond
without major reorganization of the protein fold,
these amino acid residues must lie near in space
prior to removal of the insert.

Next, we assume that only random coils are
deleted or inserted. Further, we make the assump-
tion, not entirely obvious, that the behaviour of
randomly coiled component of a folded polypeptide
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is governed by laws governing the statistical mecha-

nics of isolated randomly coiled polymers (Flory,
1853).
For an ideal unidimensional randomly coiled

polvmer, the probability that the two ends lie
together in three-dimensional space is inversely
proportional to the mean volume occupied by the
polymer. This volume is proportional to the cube of
the mean radius of the polymer. As the mean radius
of a sphere occupied by a randomly coiled polymer
is proportional to the square route of the length of
the polymer (Flory, 1953), the probability that two
ends of a randomly coiled unidimensional polymer
lie near in space is proportional to the length of the
polymer raised to the three-halves (or 1:5) power.
Thus. given these assumptions, we might expect the
probability of an indel of length & will vary with
L=Y5, remarkably close to the £7'7 dependence
observed empirically.

This calculation is appropriate only for an ideal-
ized unidimensional polymer, of course. Real
polymers fill the second and third dimensions in
space orthogonal to the dimension along the
polymer chain, giving rise to an excluded volume.
The excluded volume of a real polymer chain
increases the exponent in the formula relating mean
volume to length. This exponent is an experi-
mentally measurable quantity, and depends to some
extent on the composition of the polymer. For a
typical polypeptide, the volume of a random coil is
a function of (length)!7* 8 (Brant & Flory, 1965),
remarkably close to that observed in the gap length
distribution reported here.

Thus, the Zipfian distribution of gap lengths
observed here can be explained, both qualitatively
and quantitatively, as the consequence of two
hypotheses relating to the folded structure of pro-
teins. First, gaps are flanked by amino acid residues
that lie close in space in the folded structure of
proteins. Second, the insert added or removed in the
insertion or deletion event adopts a random coil
structure. with the random coil structure behaving
much as a free random coil might.

We fully recognize that by treating the insert as
an independent folding unit (Flory, 1053), this
explanation assigns a greater role to the insert in
determining the overall conformation of the poly-
peptide chain than is generally accepted. This will
undoubtedly make this explanation controversial.
However. the hypotheses underlying the explana-
tion have proven to be quite useful in predicting de
novo the folded structure of proteins from a set of
aligned sequences of homologous proteins (Crawford
of wl., 1987 Benner. 1989; Benner & Gerloff, 1991).
For example, the folded structure of protein kinase
was recently predicted in advance of any erystallo-
graphic data (Benner & Gerloff, 1991); the predie-
tion later shown by erystallography to be
remarkably. accurate (Knighton e al, 1991;
Thornton e al., 1991; Benner, 1992). Tn this predic-
tion, a randomly coiled structure was assigned to
any segments that were deleted in any of the homo-
logous proteins, and the alignment parsed at this
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Figure 2. Probability of indel as a function of

evolutionary distance. Data from analysis of the Swiss-
Prot Version 19 database (Table 1B, PAM bounds 118 to
1), (B Slope =364, intercept 208, 2 =0-999. A
similar plot for data obtained from the analysis of the
MIPS Version 64 database yields slope = 357, intercept
252, 7 =0097. Data at PAM distances greater than 10
were selected as they display the smallest variance, and
are likely to be suitable for extrapolation to infinite
evolutionary distance. Linear fits for the entire data set
were also obtained (Swiss-Prot: slope =313, intercept
434, R? =0-997: MIPS: slope = 251, intereept 594, [t* =
0-978).

point.  Further. in assembling the predicted
secondary structural units into supersecondary
structures. the amino acid residues fanking
deletions were brought togethev in space. Thus, the
hypotheses used to explain the gap length distribu-
tion can be divectly applied to the problem of de
novo prediction of the folded structure of proteins.

A linear relationship was observed between the
average number of amino acid residues between
indel and the reciprocal of PAM distance (multipled
by 100, Fig. 2). This choice of axes is not whaly
arbitrary, as the reciproval of PAM distance (the
abseissa) is directly proportional to the average
nuimber of amino acid residues between mutations
in an alignment, while the ordinate describes the
average number of amino acid residues between
indels.

The plot in Figure 2, containing data collected
with lower and upper PAM bounds of 11-8 and 100.
displays two notable features. Tirst. it is remark-
ably linear. Second, as the average distance between
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residues suffering mutation falls to zero (that is, as
evolutionary distance measured in PAM units
becomes infinite), the average distance between
indels does not also fall to zero. Rather, it appears
that segments of proteins, on average 30 to 40
amino acid residues in length, remain undisrupted
by indels even after extended periods of divergent
evolution.

Such extrapolations are, of course, prone to error
and should be treated with caution. For example,
Pascarella & Argos (1992) used an analogous extra-
polation from a much smaller set of data to draw a
different conclusion that the average size of the
undisrupted peptide unit is between seven and eight

amino acid residues long. Thus, interpretations of

the extrapolation presented here should be made
with caution. Nevertheless, if ‘we assume that the
extrapolation in Figure 2 is accurate, it is worth
noting that peptides 30 to 40 amino acids in length
are often presumed to be the smallest that can fold
to adopt a stable folded structure in aqueous solu-
tion (Wetlaufer, 1981; Thomas & Luisi, 1980,
Patthy, 1991). For example, pancreatic poly-
peptide, the smallest nmaturally occurring peptide
that has been demonstrated by crystallography to
form a stable folded structure, contains 36 amino
acids (Glover ef al., 1983). Work in this laboratory
has suggested that designed peptides with 32 amino
acids form stable structures (Allemann, 1089;
Johnsson et al., 1890} as dimers. While a detailed
discussion of this hypothesis must focus on indivi-
dual protein structures and therefore is beyond the
scope of this paper, it is intriguing to suggest that
during divergent evolution, units important for
folding longer than a single helix or strand remain
undisrupted by insertion and deletions during
divergent evolution.

An analysis of the types of amino acids found
flanking indels and within the insert itself (Tables 5
and 6) shows that seven amino acid residues (lle,
Leu, Met, Phe, Trp. Tyr and Val) are strongly
underrepresented both within the insert and in
regions flanking the insert at all PAM distances. Cys
is modestly underrepresented in these regions. Two
(Gly and Pro) are strongly overrepresented both
within and flanking the insert at ail PAM distances.
Ser is strikingly overrepresented in the flanking
regions. but not within the insert. Asn is normally
distributed, except at positions 3 and 4, defined as:

COXXXNT_ .. 2NXX

L YYYBSZZZZZGAY Y Y.
Both Ala and GIn are overrepresented in low PAM
windows. but are normally distributed in higher
PAM windows. The seven remaining amino acid
residues (Arg, Asp, Glu, His, Lys. Th) wre all
approximately normally distributed at all positions
within and flanking the insert, with Arg possibly
underrepresented and Asp, Glu and Lys possibly
overrepresented.

In examining the data in Tables 5 and 6, it is
important to remember (Table 1) that the number
of indels and deleted amino acids is far larger in the

(18)

upper PAM windows than in the lower PAM
windows. Nevertheless, the patterns observed are
consistent  with  two  structural  generalizations,
First, coils almost always le on the swrface of
globular proteins (Coben et al., 1986). Therefore,
hydrophilic amino acid residues are expected to be
overrepresented  and  hydrophobic  amino  acid
residues underrepresented in positions in and
around the inserts, should the inserts adopt coil
structures and be flanked by coil structures.
Consistent with this generalization, all amino acid
residues underrepresented in the region of the indel
are hydrophobic, while none of those over-
represented are hydrophobic.

Second, Pro and Gly. amino acids often found in
coils, are the most strongly overrepresented amino
acids in and flanking the insert. This is, again,
consistent. with the notion that the insert. does not
usually adopt a standard secondary structure («
helix or § strand) in" the folded protein. The abun-
dance of Ala and Gln in the insert at low PAM
distance presumably reflects the fact that several
classes of proteins contain repetitive sequences
involving these amino acids that undergo facile
deletion.

The most striking unexpected results here are the
distributions observed for Ser and Asn. The differ-
ence between the occurrence of Ser within the insert
and in the regions Hanking the insert is apparently
significant  and  deserved  further examination.
Likewise, the overrepresentation of Asn in positions
3 and 4 might suggest hypotheses regarding the role
of this residue in forming structures that are
susceptible to deletion. Both Ser and Asn are classi-
cally regarded as “structure disrupters”, as reflected
in classical secondary structure prediction heuristies
(e.g. the Chou and Fasman heuristic).

Tt is possible, of course, to use these distributions
as part of a scheme for scoring gaps, where an
estimate of the probability ol a gap is based in part
on the amino acid residues Hanking and within the
insert. This approach has not yet been computation-
ally implemented as a part of an alignment
program. However, in protein structure prediction
recipes described in detail elsewhere {Benner, 1989,
Benner & Gerloff, 1991), Pro and Gly within an
insert are said to “confirm’ the placement of a gap
within an alignment, and this confirmation streng-
thens the reliability of a “parse” based on this
placement.

[t is important to note that the results of this
study differ in several respeets from certain results
reported from other studies of indels (Demchuk et
al., 1989: Pascarella & Argos, 1992). For example,
Demehuk of al. (1989) suggest from their analysis of
indels that pentapeptides may be fundamental units
of protein structure. We do not find evidence for
this in our work. Pascarella & Argos (1992) found
that indels are slightly longer in alignments of pro-
teins with lower residue pairwise indentities than
with proteins having higher residue pairwise identi-
ties. We report the opposite trend. They suggested
that there might.-be an upper limit to gap size of
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approximately five residues. The present study
suggests no such limit. They found a rather irregu-
far relation between indel probability and percent
residue identitv. We find a more vegular relationship
between indel probability and evolutionary distance
measured in PAM units. Several of their findings
with respect to the frequencies of various amino
acid residues within or flanking the insert differ
from those reported here.

We believe that the differences between the
conclusions of other authors and those presented
here can be accounted for by three factors. First,
the database used here is large, with over 16.000
evolutionarily independent indels and no selection
hias other than that of the protein sequence data-
base as a whole. The database used by Pascarella &
Argos (1992) contained 714 evolutionarily indepen-
dent indels in protein [amilies represented in the
crystal database; the database used by Demchuk e
al. (1989) is still smaller. Second, we constructed
alignments using the more advanced Dayhoff
matrices and gap deletion penalties obtained from
the exhaustive matching of the protein sequence
database (Qonnet ef al.. 1992). Finally, Pascarella &
Argos (1992) measured evolutionary distance using
a percent residue identity: PAM distance is used
here. Although percent residue identity is a goud
surrogate for PAM distance for proteins very similar
in sequence. it is an inaccurate measure of evolu-
tionary distance at large evolutionary distances. An
analyvsis measuring evolutionary distance in PAM
therefore undoubtedly permits more accurate
sis of trends over the entire range of evolu-
tionary divergence.

The field of protein chemistry presents two chal-
lenges: de novo prediction of folded structare from
sequence data. and de novo design of polypeptides
that fold in solution and catalyse reactions.
Substantial progress has now been made both in the
design of proteins (Allemann, 1989: Johnsson ef al..
1990: Osterhout ef al., 1992) and in structure predic-
tion {(Crawford et al.. 1987, Benner. 1989; Bazan,
1990: Benner & Gerloff, 1991), and a rigorons madel
of structural and behavioural evolution in proteins
has underlaid this progress (Benner & Ellington,
19903, We expect that further evolutionary analyses
will enable still mare rapid progress to be made.
hath in these and other laboratories.
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