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A theory is presented that describes the free energy difference between the enzyme-
substrate (ES) and enzyme-product (EP) complexes that is expected in enzymes
optimized for catalytic efficiency. In such enzymes, the free energy drop between
ES and EP complexes reflects a portion of the chemical potential difference between
substrates and products outside the active site under physiological conditions.
Quatitative and quantitative predictions of the model are discussed and compared
with experimental data. The controversy over the kinetically optimal free energy
profile for an enzymatic reaction operating under constraints set forward by Albery
& Knowles (1976) is resolved.

In a seminal paper published 2 decade ago, Albery & Knowles (1976) suggested
that “'the kinetically significant transition state’ of an optimally evolved enzyme *is
flanked by kinetically significant intermediates of equal free energy”. This simple
hypothesis was one of the first to argue that the quantitative behavior of enzymes
was functionally optimized (Cleland, 1975; Cornish-Bowden, 1976; Fersht, 1977),
and therefore a product of natural selection.

Hypotheses of this type bear directly on an important question in molecular
evolution: of the behaviors displayed by biological macromolecules, which ones
reflect natural selection, and which ones reflect random drift? (Kimura, 1982; King
& Jukes, 1969). A distinction between behaviors that are selected and those that are
drifting is, at one level, a distinction between those worth studying in detail and
those that are not (Benner er al, 1985). Therefore, functional hypotheses, such as
the one proposed by Albery & Knowles, if confirmed by experiment, will have a
significant impact both on how enzymes are studied and how the evolution of
biological macromolecules is viewed.

The Albery-Knowles hypothesis has been.widely discussed (Ashton & Hatch,
1983, Cross, 1981; Senbell & White, 1978; Wilkinson & Rose, 1979, Nageswara Rao
& Cohn, 1981; Myers & Boyer, 1984; Lolkema er al, 1986; Cross et al., 1982: Rahil
et al., 1982). In the literature, what began (Albery & Knowles, 1976) as a hypothesis
for enzymes that had been partially optimized has been interpreted as a general
principle of enzymic evolution (Kenyon & Reed 1983; Cook & Cleland, 1981). To
the extent that enzymes are kinetically optimized, the hypothesis has been interpreted
as predicting that enzyme-bound substrates and enzyme-bound products will have
equal Gibbs free energies (Hassett et al, 1982). When the internal equilibrium
constant is not displaced towards unity, the enzyme is viewed as lacking an “‘associ-
ated catalytic advantage” (Rahil er al., 1982).
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In its current form, the hypothesis of matched internal thermodynamics corre-
sponds to a statement that, for a catalytically optimized enzyme, the “internal
‘equilibrium constant™ (the equilibrium constant between enzyme-bound substrates
and products, ES and EP) is unity, regardless of the magnitude of the “external
equilibrium constant” (that between substrates and products in solution). In simpler
terms, kinetically perfect enzymes, those that have evolved to have the highest rate
of turnover, bind substrate and product so that the bound complexes (ES and EP)
have equal free energies.

As expected for so direct and fundamental an assertion, the hypothesis has received
much experimental attention in the past decade. Originally, Knowles and his
co-workers found that the internal states of triosephosphate isomerase have approxi-
mately equal free energies (Knowles & Albery, 1977). Shortly thereafter, Cohn
(Nageswara Rao & Cohn, 1981; Nageswara Rao et al., 1979), Rose (Wilkinson &
Rose, 1979) and their co-workers reported internal equilibrium constants close to
unity in several phosphoryl transferases. These included enzymes that normally
catalyze reactions far “downhill” energetically. More recently, the notion that
enzymes have internal equilibrium constants close to unity was used to formulate
functional hypotheses explaining the stereoselectivity of enzymatic reactions (Ben-
ner, 1982a,b) and as the basis for an analysis of the structure of proteins involved
in electron transfer (Rees, 1985).

It appears to be generally true that the energies of enzyme-substrate (£S) and
enzyme-product (EP) complexes are more similar than the energies of substrate
(8) and product (P) free in solution. However, it is also true that many internal
equilibrium constants are not unity within reported experimental error. For example,
the internal equilibrium constant reported for pyruvate kinase is different from unity
by approximately an order of magnitude (Stackhouse et al, 1985); the internal
equilibrium constant for fructose bisphosphatase appears to be far from unity (Rahil
et al, 1982); and the internal equilibrium constants for various dehydrogenases
appear to lie between 1:1 to 9:1 (Gutfreund, 1975; Nambiar et al., 1983; Dickinson
& Dickenson, 1978).

Based on these results, a new model, the *“descending staircase” model, was
suggested as an alternative to the “‘matched internal thermodynamics™ model (Stack-
house et al., 1985) to describe the free energy profiles of optimally evolved enzymes.
In this model, the internal equilibrium constant reflects a portion of the external
drop in chemical potential driving the reaction catalyzed by the enzyme, under the
physiological conditions for which the enzyme is adapted.

Several papers have appeared in recent years that either support or modify the
hypothesis of matched internal thermodynamics, and a lively controversy has ensued
(Cook & Cleland, 1981; Chin, 1983; Rees, 1985). However, it remains a puzzle as
to whether enzymes whose internal equilibria are different from unity are enzymes
that are not (yet) optimally evolved, whether this hypothesis applies only to certain
enzymes, or whether these enzymes should be interpreted as counter-examples to
this hypothesis that shed doubt on its validity.

Should the internal equilibrium constant be predictable by a functional theory,
the implication would be that natural selection is more powerful than commonly
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thought at optimizing the detailed behavior of macromolecules (Benner et al., 1985).
Should experimental results not be consistent with the predictions of a functional
theory, the implication would be that either kinetic “perfection™ as defined by the
theory is not a primary goal of natural selection, or that enzymes are unable to
~achieve kinetic “perfection”. Any of these conclusions would be of interest.

However, to date no correct quantitative theory has been published that describes
the internal thermodynamics that are expected from a kinetically optimized enzyme.
We present a theory in this paper.

Theory

Rate constants are expressed as k,, where n refers to a designated step in the
reaction scheme. Equilibrium constants are expressed as K,, where n refers to a
step in the reaction scheme; equilibrium constants are equal to the ratio of the rate
constants for the forward and reverse reactions. S and P indicate the concentrations
of substrate and product respectively. 8 and C are parameters defining a linear free
energy relationship of the form

ky= CK," (1)

where C represents the “intrinsic” rate constant for the reaction (the rate constant
where K,=1), and B describes the degree to which the transition state for the
reaction resembles substrate or product.

We analyze the kinetic model given below
k
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The velocity of an enzymatic reaction is a function of its microscopic kinetic
parameters, v =f(k,, ky, k3, k_y, k_2, k_3). This function is

(k1k2k3s - k_lk_zk_:;.P)
ko kat Kok + k_tko+ ki S(kot kot ks) + k_sP(k_y+ ka+ k_3)

This equation is valid at all concentrations of substrate and product. However,
it is constrained by an expression relating the microscopic rate constants to the
equilibrium constant for the reaction

Keq=k|k2k3/k—_|k—2k—3- (3)

In the original Albery-Knowles derivatiéh, an “efficiency function,” defined by
eqn (4) was optimized. This efficiency function is related to the inverse of eqn (2).
Equations (2) and (4) are not identical—(4) is lacking one term. As the missing
term contains only K.,, S, and P as components, derivatives taken with respect to
microscopic rate constants are the same, regardless of whether one starts with egn
{(2) or (4). However, certain conclusions that may be drawn from eqn (4) directly
are incorrect with respect to their dependence on §, P and K-
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In principle, optimal values for the microscopic rate constants ¢an be obtained
from eqn (2) simply by differentiation of the equation with respect to the five Kinetic
parameters that remain after the equilibrium assumption is exploited to remove one
variable. The five derivatives, set to zero, yield five equations that can be solved
simultaneously to provide optimal values of each rate constant. However, this
optimum is both chemically unreasonable and mathematically trivial; the forward
rate constants are infinite. Thus, the model must be improved by finding mathematical
constraints on eqn (2) that are evolutionarily reasonable and, one hopes, also force
the model to give optima that are chemically reasonable.

Two constraints were suggested by Albery & Knowles. The second order rate
constants k, and k_; are assumed to correspond to the second order rate constants
for the diffusion of substrate to enzyme. As rates of diffusion in solution presumably
cannot be altered by the structure of the protein, k, and k_; are treated as constants
in the optimization of eqn (2). As a further approximation, they can be assumed to
be equal to k,, the second order diffusion rate constant.

Even with k, and k_, constrained, eqn (2) gives a trivial optimum where k. is
infinitely large, and a constraint on k, is necessary. Albery & Knowles constrained
this variable by inroducing a linear free energy assumption (1), where k. and A_,
are related to the equilibrium constant K, by eqn (1) and the following equation

k..2="'CK§—I. (5)

Using substitutions appropriate to these assumptions, eqn (2) is transformed into
an equation of two variables, k_; and K,, with two microscopic rate constants that
are presumed to be constant (k,, k_.), one (k;) which is eliminated using the
equilibrium assumption, and three other parameters, K., {invariant for a given
reaction), 8, and C. ‘

V=(Emlk-1CKg—lk—3(chS_ P)

CKE 7 (k_,+ k,S+k_yP+ Kok k_y/ k) +k_k_s P
+CKE(k\S+k_3P)+ K3k | Kok 3(k_\/k,+S)

(6)

If B and C are assumed to be evolutionary invariant characteristics of the reaction
being catalysed (as is K.,), this equation in two variables (k_, and K,) can be solved
to give a non-trivial optimum. It is this optimum that defines the kinetically optimal
enzyme and that is examined below.

The analytical expression for the optimum is rather complicated, and does not
provide an intuitive understanding of how the catalytic efficiency of an enzyme is
dependent on variation of the internal equilibrium constant. However, if the partial
derivative of eqn (6) with respect to k_, is taken, and set to zero, a simple expression
relating k_, to K, is obtained

K2y = kaka(es + k) (SF PY/ (k2K ) (7)

where k, =k, =k_;.

The derivative set equal to zero in eqn (7) was given the name the “uniform
binding constraint” (Albery & Knowles, 1976). Some derivations that examine this
derivative first justify this in terms of a particular model of enzymic evolution. In
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this model, it is assumed that mutations that affect the {ree energies of bound states
uniformly are more commeon than mutations that influence the energies of bound
states differently. While this model may be arguable (Li et al, 1983), it is not a
necessary assumption to exploit the mathematical model to find optimal values of
K. and k_,. The optimum found by setting partial derivatives to zero is a global
one. It does not depend on the order in which the derivatives are taken.

When eqn (7) is substituted into eqn (6), it yields an equation for the velocity of
the enzymatic reaction as a function of only K,, the internal equilibrium constant

JCKE"‘“”
{LCK¥~"9+ MK3°+ N[CK5 + CK¥™"1"°+ QK;°7}

v/ Ei=

where
= ki ’[(S+ P)/ Kg]**(KeqS ~ P)
L=[k;(S§+P)/K]"(1+K,,)
M =[ky(S+P)/ Keg]SkyP
N =2k;(S+P)
Q =[ki(S+ P)/K.]"*KefksS.

These are all constant terms, given the assumptions above.

Equation (8) is readily simulated by computer, and these simulations are described
below to show how the velocity of an enzymatic reaction is influenced by variations
in the internal equilibrium constant K,, and by variations in the other kinetic
parameters that are presumed to be evolutionarily constant for a partxcular enzyme.
These simulations were done on an IBM AT computer.,

Equation (8) is derived for an enzyme catalyzing the conversion of one substrate
to one product. For enzymes having more substrates or products, the same two
contraints (holding rate constants for the binding of substrates and products
invariant, and relating rate constants for each chemical step to equilibrium constants
for that step by a linear free energy relationship) yield rate equations that give a
non-trivial optimum upon differentiation with respect to the remaining kinetic
variables. Again, the set of simultaneous equations obtained from this differentiation
generally resist analytical solution to give optimal values of the microscopic rate

“constants. However, these values can be obtained by computer simulation of the
equations obtained from the partial differentials.

Consider for example enzymes catalyzing Teactions with two substrates and two
products that bind in defined order (an ordered Bi-Bi mechanism) (Cleland, 1963)

k k. ky k, ks
E+A+B == EA+B == EAB == EPQ == EP+Q —= E+P+Q
(8)

(Here, k,, ka, k_y, and k_s are presumed to reflect the diffusion limit, and k,, and
k_, are related to K; by a linear free energy relationship. Then, ks is expressed in
terms of k_, using the external equilibrium assumption, and the partial derivative
of the rate equation is taken with respect to k_, and set equal to zero. Optimal
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values of k_, (and k;) are then found by computer simulation. These values are
used in the next simulation, where k, is expressed in terms of k_, using the external
equilibrium assumption, and the partial derivative of the rate equation is taken with
respect to k_, and set equal to zero. Optimal values of k_, (and k) are then found
by computer simulation. This process is iterated until self-consistent values are
obtained. '

As we shall see, the equations derived above show that the optimal internal
equilibrium constant for a catalytically optimized enzyme differ significantly (and
predictably) from unity in many cases. Some comment is necessary, to prevent
confusion, to show that published derivations of the hypothesis of matched internal
thermodynamics, as well as published critiques of the hypothesis, are either incom-
plete or not valid. '

The first proposed derivation of the hypothesis (Albery & Knowles, 1976) was
based on the derivation of an expression for K, where '

K,=8/(1-B). 9

Albery & Knowles argued that proving this relationship (eqn (9)) is equivalent
to proving that K, =1. In this argument, 8 is assumed to be approximately 0-5 for
most reactions; therefore, by eqn 9, K,=1. We have previously noted that an
assumption that g is approximately 0-5 is tantamount (by the Hammond postulate)
to an assumption that K, =1 (Nambiar er al,, 1983). Therefore, a deduction that
K, is unity based on an assumption of a 8 of 0-5 has elements of circularity. In
fact, values of 8 can (normally) be between 0 and 1. Therefore, values of K, allowed
by eqn (9) can be between 0 and infinity. Further comment on this point can be
found in Nambiar et al. (1983).

Algebraic inconsistencies within the Albery-Knowles derivation were noted by
Chin (1983), who argued that the hypothesis is not valid under “irreversible condi-
tions,” but that it remains valid under “reversible conditions™. However, this
argument in support of this more limited hypothesis is incomplete. Inthe “‘reversible™
case, Chin sets substrate and product concentrations to their equilibrium values,
conditions under which there is no net flux and hence no reaction velocity to
optimize. Further, when Chin derives the value of K, that gives the optimal flux
under equilibrium conditions he finds K, = 8/(1 —B) (eqn (9)). Again, deriving eqn
(9) is incorrectly assumed to be equivalent to proving the relationship K,=1.

In an important paper discussing electron transfer enzymes, Rees (1985) attempted
a defense of the hypothesis under both reversible and irreversible conditions in
response to Chin’s critique. This was done by treating 8 as an evolutionary variable,
and finding the values for K, that give first derivatives of O with respect to variations
in B. Although a solution that gives a stationary point on the surface is found by
Rees where K, =1, this solution is not in fact an optimum. Rather, the stationary
point is a saddle point, where the velocity of an enzyme is maximized with respect
to one of the variables but is a minimum with respect to another. This has been
independently shown by Rees (personal communication).

Thus, there is no complete algebraic argument in the literature supporting the
hypothesis of matched internal thermodynamics for either the reversible or the
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irreversible case. However, a convincing critique of the hypothesis has also not been
presented.

Chin provides an alternative description for an optimal enzyme operating
“irreversibly” which supports our idea of a descending staircase of internal states.
However, his derivation formally applies only to the limited case where P =0, Thus,
it does not predict, for example, the kinetic parameters of an enzyme that catalyzes
a uni-directional flux but may still be subject to product inhijbition.
~ Finally, Raines (1986) has recently presented a discussion based on a mathemati-
cally complete efficiency function, and concluded that the optimal internal equili-
brium constant lies within certain bounds.

Results

Equation (8) describes a multidimensional surface relating the velocity of an
enzyme in terms of a single evolutionary variable, K,, and a set of parameters. The
nature of this surface is of interest as we search for values of the parameters and
rate constants that characterize a kinetically optimized enzyme.

Figure 1 shows cross sections of this surface, where the natural logarithm of the
velocity is plotted as a function of K, for several values of the parameter C (eqn
(1)). Values of other parameters are listed in the caption. The physiological condi-
tions are fixed with P/S =0-01 K.,. Thus, the sections of the surface represented
in Fig. 1 correspond to an enzyme evolving under physiological conditions where
the concentrations of § and P are far from their equilibrium values.

Varying C has the effect of changing the extent to which the chemical step is rate
limiting. The bottom trace shows the surface in the extreme where the chemical step
is virtually completely rate limiting (C is small).

6~
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Fi1G. 1. A plot of In(z) versus In{K,), for different values of C, the intrinsic rate parameter for the
reaction ES going to EP. §=10mm, P=1mMm, K =10, B=05, k;=k_,=10" M " sec". Optimal
values of K, (with the corresponding values of C) are 99 (C =1); 95§ (C=3), 88 (C=5)62(C=8)
M(C=10%13-8(C =1 3-5(C=15).




498 A. D. ELLINGTON AND S. A. BENNER

Two conclusions are apparent from inspection of Fig. 1, both inconsistent with
a general notion of matched internal thermodynamics. First, it is apparent from the
plot that the optimal internal equilibrium constants under the conditions described
in the caption are not unity. The optimal values for K, given different values of C

are listed in the caption.

Second, if the chemical step remains rate limiting, the optimal value of K, is
essentially independent of the intrinsic rate parameter C of the linear free energy
relationship (eqn (1)). However, as other steps become partially rate limiting, the
optimum value of K, shifts towards unity, and the optimum broadens.

This is not unexpected. In this model, changing K, has two effects, one positive
and one negative. First, increasing K, increases the flux through the enzyme by
making k, faster. Second, increasing K, decreases the flux through the enzyme by
increasing the concentration of the EP complex for any arbitrary value of [P].
Figure 1 illustrates the consequence of a tradeoff between these two consequences
of varying K,. As the catalytic step (represented by k.) becomes less rate limiting,
less advantage is gained from an increase in k, arising from an increase in K., given
the concomitant increase in [ EP] under steady state conditions. |

This result may be a partial explanation for the prevalence of enzymes having an
internal equilibrium constant close to unity. As the chemical step in an enzymatic
reaction may frequently only be partially rate limiting (Cleland, 1975), equilibrium
constants reasonably close to unity are expected to be frequent.

Inspection of Fig. 1 shows that the optimum appears to be rather broad (in this
logarithmic plot) as the chemical step becomes less rate limiting. Given this, it is
reasonable to ask whether there is any meaningful optimum under conditions where
the chemical step is only 10-15% of a rate limiting step for product dissociation,
a situation presumed to occur in several classes of enzymes (e.g. dehydrogenases).
Figure 2 shows a plot of v versus log K, under conditions where the chemical step
is only 15% of the product release step. As is evident from the plot, a clear optimum
is seen for the internal equilibrium constant (K,=1-15).

Figure 3 shows how the surface varies as k,, the rate constant for the binding of

substrate, varies. Similar to the results shown in Fig. 1, as k, becomes slower, the
optimum broadens and the optimal internal equilibrium constant shifts towards
unity. While k, is normally treated as evolutionarily invariant, this simulation is
relevant to the discussion of recent suggestions that substrate reaches the active site
by direct transfer from another enzyme (vide infra).
| Another feature of the surface described by eqn (8) is that the optimal internal
equilibrium constant K, depends on how far the reaction is from equilibrium under
the conditions for which the enzyme is adapted. Figure 4 shows cross sections of
the surface for several values for the ratio of concentrations of free substrate and
product {5/ P} at constant K.,. Values for other parameters are listed in the caption
The optimal K, drops from 457 to 1-7 as the P/S ratio varies from 0-001 K.,
0-5 K.,. As P/S approaches K.,, the internal equilibrium constant X approaches
unity. However, contrasting with the matched internal thermodynamics model, an
internal equilibrium constant near unity occurs only when the enzyme is catalyzing
a reaction very near to its equilibrium.
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F1G. 2. A plot of reaction velocity versus In{X,) under conditions where the rate constant for the
chemical step is approximately 15% of the rate constant for product dissociation. K., =10"%, § = 1 mm,
P=40nMm, ki =k ;=108 M 'sec™!, B =0-5, C =65. At the optimum, the value of the rate constant for
the release of product is approximately 100/sec, while the rate constant for the chemical step is
approximately 700/sec. Nevertheless, the model yieids a clearly optimal value of K, (1:15),
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FiG. 3. A plot of In(v) versus In(K,) for different values of k,, the rate constant for binding of

substrate. $=10mMm, P =1 mm, Key=10,8=05,k_y=10"M 'sec™", and C = 10. From the bottom to
the top, the traces are for values of k, that are, respectively: 10°, 10°, 10°, 10°, and 10® m~! sec™!.

Figure 5 shows that the optimal value of K, is a function of the parameter B8 of
the linear free energy relationship (eqn (1)). As B varies from 0-3 to 0-7, the optimal
K, varies from 125 to 28 for a system far from equilibrium (P/S=0-01 K. ). This
result is quite consistent with intuition. The larger the value of B, the more k, is
increased by a given increase in K, What is surprising is that for large values of
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FIG. 4. A plot of In(v) versus In( K,), for different values of the ratio of P/S at a constant equilibrium
constant (i.e., for changes in the chemical potential driving the reaction). K =10, 8=0-5, k, =k_; =
10* M~ 'sec™!, C =8. P is held constant at 1 mm, and § is varied. From bottom to top, optimal values
of K, (with the corresponding values of S in parentheses) are: 1-7 (0-2 mm), 7-2 {1 mn), 20(3 mm),
32(5mm), 62 (10 mM), 113 (20 mm), 251 (50 mMm) and 457 (100 mm).
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FI1G. 5. A plotof In(v) versus In{ K,), for ditferent values of 8, the parameter representing the sensitivity
of the rate of the chemical step to the equilibrium constant for the chemical step. Parameters are chosen
so that the chemical step is clearly rate-limiting. $ = 10 mn, P=1mm, K, =10, k, = k_; = 10" M7 sec™,
C = 8. From bottom to top, optimal values of K; {with the corresponding values of 8) are: 28(3 =0-3},
44{B =0-4), 62 (B =0-5), 88 (B =0-6), 125 (B =0-7).
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B, where varying K, has the most substantial impact on k,, the internal equilibrium
constant for the optimal enzyme exceeds Keo(S/ P)if ky is rate limiting. For example,
when g8 = 0-7, the optimal internal equilibrium constant is 125, while K..(S/P)=100.

Discussion

- In this model, the complete velacity equation describing the rate of an enzymatic
reaction is constrained by making the following assumptions, both following the
analysis of Albery & Knowles (1976):

(a) The second order rate constants describing the rate of binding of § and P
are not subject to evolutionary variation.

(b) The rate of the chemical step converting ES to EP is constrained by a linear
free energy relationship relating the rate to the equilibrium constants of the reaction.

Assumption (b) is consistent with data from Fersht’s laboratory, which suggest
that there exists a class of mutations where perturbations in kinetic behavior appear
to be related to perturbations in internal thermodynamic behavior by a linear free
energy relationship (Fersht et al, 1986). Assumption (a) may not be true for all
enzymes (vide infra), but'it may be a serviceable approximation for many (Cleland,
1975).

These two constraints are sufficient to permit mathematical optimization of the
complete rate equation to give reasonable values for k_ and the internal equilibrium
constant K for a kinetically optimal enzyme.

The model also makes two qualitative predictions concerning K,. The first,
agreeing with the picture from the “descending staircase” model, is that the internal
drop in free energy going from the ES complex to the EP complex will be in the
same direction as the external free energy drop under the physiological conditions
for the enzyme. Further, to the extent that the catalytic step is only partially rate
limiting, internal equilibrium constants will tend towards unity.

Both of these qualitative predictions are generally consistent with experimental
data. For example, the experimental fact that K, for many enzymes is close to unity
may be explained as a consequence of two well known facts: (a) for many enzymes, -
the catalytic step is not fully rate limiting; and (b) many enzymes operate physiologi-
cally under conditions where the substrates and products are close to equilibrium.
Conversely, enzymes catalyzing reactions far from equilibrium (e.g., fructose bis-
phosphatase), and enzymes having chemical sté’Bs that are rate limiting (e.g. pyruvate
kinase} are expected to have internal equilibrium constants farther from unity, with
the internal equilibrium constant favoring the enzyme-product complex.

- Further, the model makes an interesting qualitative prediction in the case of
isozymes that have evolved to catalyze the same reaction in opposite directions. The
model qualitatively predicts that the internal equilibrium constant will be a descend-
ing staircase downhill in the direction of the flux, regardless of which step is rate
limiting, and regardless of the values of various parameters.

This prediction is also consistent with available experimental data. For example,
Kaplan (1968) suggested that the two isozymes of lactate dehydrogenase, one from
muscle and one from heart, have evolved to catalvze the same resctinom im Armacita
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directions. Lactate dehydrogenase from muscle catalyzes the conversion of
pyruvate to lactate; lactate dehydrogenase from heart catalyzes the conversion
of lactate to pyruvate. Consistent with a qualitative expectation based on the
model, the lactate dehydrogenase from muscle is reported to have an internal
equilibrium constant of approximately 4 favoring the enzyme-lactate-NAD™
ternary complex (Gutfreund, 1975). In contrast, the lactate dehydrogenase from
heart is reported to have an internal equilibrium constant for lactate dehy-
drogenase from approximately 3 in favor of the enzyme-pyruvate-NADH ternary
complex {Schwert et al, 1967). While there remain reservations regarding the
ability of experimental methods used in these studies to unambiguously measure
the relevant internal equilibrium constants, reexamination of these results using
different methods has produced the same qualitative results (Nambiar er al., 1983;
Ellington, unpublished). : '

The isozymes of lactate dehydrogenase have been sequenced; they are clearly
homologous (Eventoff et al, 1977). The divergent internal equilibrium constants
therefore reflect either non-functional drift, or functional adaptation in two lactate
dehydrogenases optimized for two different environments. The magnitudes of the
divergent internal equilibrium constants are qualitatively consistent with expecta-
tions based on the functional model presented here. While more measurements of
Ky's for pairs of isozymes are necessary to make a convincing case, this one
confirming instance suggests that the divergence of K; in lactate dehydrogenases is
functionally adaptive.

At a semi-qualitative level, the model may also make predictions, subject to certain
limitations. For example, hexokinase and fructose bisphosphatase both catalyze
phosphoryl transfer reactions. Hexokinase catalyzes the transfer of a phosphoryl
group from a phosphate to an alcohol. The reaction is exergonic; the B value ts
expected to be small from the Hammond postulate. In contrast, fructose bisphos-
phatase catalyzes the transfer of a phosphoryl group from an alcohol to water.
Neglecting the ionization of the product (which presumably occurs in a subsequent
step of the reaction, not in the catalytic step), the reaction is approximately iso-
energetic. The 8 may be near 0-5. :

Under physiological conditions, the reaction catalyzed by both enzymes is rather
far from equilibrium. Further, in both enzymes, the chemical step is apparently not
rate limiting (Rahil er al., 1982; Wilkinson & Rose, 1979). Thus, semiqualitatively,
the model suggests the expectation that the internal equilibrium constants for fructose
bisphosphatase would be larger than for hexokinase. Semi-qualitatively, this is what
is reported. (Rahil er al, 1982; Wilkinson & Rose, 1979).

Quantitative predictions are similarly limited by the need to estimate values for
individual parameters in the model. Two limitations are especially serious.

First, to make quantitative predictions, a value for 8 is needed. Values of 3 for
some chemical reactions can be estimated from the literature, and might be used
in conjunction with the model to make quantitative predictions. Of course, the
relevant B should relate the rate of the reaction to the equilibrium constant for the
reaction (as opposed to relating the rate of the reaction to the pKa of one of
the reactants).

e e e R 1 =2
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However, the relevance of a 8 value for a reaction in solution to an analogous
reaction in an enzymic active site is uncertain. Formally, the B.in the model above
refers to the change in rate as a function of change in equilibrium constant for those
mutations that affect energies of bound species linearly across a reaction coordinate.
However, the position of a transition state in the enzymatic reaction need not be
the same as the reaction in solution; thus, the 8 in solution need not be the B for
an entirely analogous reaction in the active site. ‘

Only partial solutions to this problem can be offered at this time. For reactions
where the catalytic step is not fully rate limiting, the predicted values for K, are
not strongly dependent on 8. In those cases where the catalytic step is rate limiting.
B must be guessed from solution reactions and the Hammond postulate, with an
understanding of how an error in 8 would influence the predicted values of the
internal equilibrium constant. Finally, molecular biological techniques now permit
replacement of individual amino acids in a protein, and the measurements of rate
and equilibrium constants in the altered proteins. Thus, the 8 for an enzymatic
reaction is at least in principle experimentally accessible. The recent elegant work
of Fersht and co-workers (1986) shows how these methods might be used to
determine a B for a specific enzyme. '

Regarding the second limitation, in the model, C is treated as a parameter that
is evolutionary constant. To use the model to make quantitative predictions, a value
for C is needed. This value can be estimated from experimental data, either from
an absolute rate constant for the chemical step, or a ratio of rate constants for the
chemical and the rate limiting step. An internal equilibrium constant (K,) is then
calculated that is both optimal (as defined by the model) and gives microscopic
rate constants that fit these experimental values.

To illustrate the use of this model for semi-quantitative estimation of the internal
equilibrium constant (and the limitations of the model as well}, an estimate of the
internal equilibrium constant was made for the enzyme pyruvate kinase. Physiologi-
cally, pyruvate kinase operates far from equilibrium to form ATP and pyruvate
from ADP and phosphoenolpyruvate (PEP). Approximate values for the physiologi-
cal concentrations of substrates and products are known (Srivastava & Bernhard, -
1985). The rate limiting step for the enzymatic reaction is probably the interconver-
sion of the ternary complex (Reynard er al, 1961). Therefore, a value of C was
chosen to make the chemical step clearly rate)imiting.

A value of 0-2 was chosen for 3. Skoog & Jencks (1983) report a value of B=0-17
for an analogous phosphoryl transfer reaction between pyridines. Alternatively, for
the enzyme-catalyzed attack of pyrophosphate on a phosphomonoester, Fersht and
co-workers (1986) report a value of B=0-21.

Using these values, and a kinetic scheme that involves rapid binding of substrates
and products (Reynard et al, 1961), the model yields a calculated value of 16 for
the internal equilibrium constant of pyruvate kinase. This is similar to a value
measured experimentally (10-15) (Stackhouse et al, 1985). The sensitivity of the
calculated value to changes in the other parameters is shown in Table 1.

In summary, the model presented here can make experimentaily testable predic-
tions regarding the direction and approximate maenitude of intermal amis ]l el
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TABLE 1

Determination of the optimal internal equilibrium constant for pyruvate kinase operating
under in vivo substrate concentrations. Values for K, were determined by assuming
a random bi-bi mechanism with a rapid equilibrium assumption for one substrate [ prod-
uct pair, in this case ADP/ ATP. Such an assumption is justified considering the relative
values of the different dissociation constants (Mildvan et al.). The rate equation for
such a mechanism is identical in form to that for a uni-uni reaction and hence was
subject to simulation in a manner similar to that used above. The value of C was
chosen so as to make the catalytic step rate limiting for the reaction ( Boyer et al.).
The values for parameters not explicitly varied are: kpepon = Kpyron = Kappon =
kATP.(m =1x 108, kATp‘,,ﬁ'= kADp‘,ﬂz 1% 104 (Mildvan et al.); Keq =3333 (fn direction
of pyruvate formation) (Srivastava & Bernhard, 1986); ATP = 8030 um (Srivastava
& Bernhard, 1986); K., x PEP x ADP/PYR x ATP =65. As expected, the optimum
is sensitive to the ratio of the substrate and product concentrations and to the choice
of a value for B. As the catalytic step becomes less rate limiting, the optimum shifts
towards one, as seen in Figs 1-3

PEP(uM) PYR(uMm) B C ADP(jum) K
65 380 ©0-2 0-1 926 16:4
130 380 0-2 0-1 926 33-4
65 760 0-2 0-1 926 8-3
65 380 0-2 01 1852 316
65 380 0-25 01 926 219
65 . 380 0-15 0-1 926 11-3
65 380 0-5 0-1 926 65
65 380 -2 1-0 926 15-5
65 380 0-2 30 926 12-3

constants in enzymes. To the extent that experimental data are consistent with these
predictions in an enzyme, the detailed thermodynamic behavior of the enzyme will
appear to be functional, reflecting not only the intrinsic free energies of the substrate
and product, but also the concentrations of S and P under the physiological
conditions for which the enzyme is adapted.

If this suggestion is true, it has a substantial impact on the biologist’s view of
molecular evolution. Currently, consistent with the “‘neutral theory of molecular
evolution™ (Kimura, 1982; King & Jukes, 1969), such detailed behaviors of enzymes
would be candidates for ‘‘neutral™ variation, variation that has no impact on the
survival of the host organism and therefore must be non-functional. Careful
reexamination of the data and internal equilibrium constants is now necessary to
explore this issue. o

However, it is equally important to note potential ways in which this model might
be criticized.

First, Srivastava & Bernhard (1985) have noted that the concentrations of many
enzymes in the glycolytic pathway are substantially higher than the dissociation
constants of several of their substrates. Thus, these authors have argued that substrate
finds its way into the active site of an enzyme by direct transfer from the enzyme
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preceeding it in the metabolic pathway. For enzymes where this is true, k, and k_,
reflect rates of direct transfer from protein to protein, not the rate of diffusion of
small molecules in solution. Therefore, these rates would not necessarily be
evolutionarily constant, and assumption {a) must be modified.

Further, for those enzymes where Bernhard’s argument applies, the quantitative
aspects of the model must be modified. The chemical potentials of S and P become
the chemical potentials of S bound to the preceeding enzyme in the pathway, and
P bound 1o the following enzyme. This modification docs not appear to affect the
qualitative picture of the “descending staircase” model, where only the direction
of flux in a metabolic pathway must be known to make predictions. However, data
needed for the modified model to make semi-quantitative predictions are generally
not available. As we do not yet know for how many enzymes Bernhard’s argument
is applicable, for now the simpler model seems preferable as a working hypothesis.

Also, almost every new experiment that examines the kinetic details of enzymatic
reactions reveals further complexity, especially for enzymes with more than one
substrate and product (e.g. Dougherty & Cleland, 1985). In many cases, these
complications have little kinetic significance, and do not interfere with comparing
predictions from the model with experimental data. However, caution is necessary,
as the simple reactions schemes used in our model are probably rigorously accurate
for only a very few enzymes. Problems potentially exist in measuring internal
equilibrium constants when experimental data collected on an enzyme with a

complex kinetic mechanism are interpreted in terms of a simpler kinetic mechanism.

These problems have only begun to be explored.

Finally, we must again caution that catalytic optimality as defined in this model
may not be the only evolutionary goal, even with regards to the purely catalytic
properties of an enzyme (Stackhouse et al.,, 1985). What is almost certainly biologi-
cally relevant is the total flux of substrate to product at the level of the metabolic
step, rather than the microscopic flux through a single enzyme molecule. The same
flux can be obtained with a fewer enzyme molecules that each are faster catalysts
(diffusion limited), or with more enzyme molecules that are each somewhat slower
catalysts. A reasonable guess is that the evolutionarily optimal strategy is to create
enzymes that produce the desired flux at a minimum metabolic “cost”. If diffusion
limited enzymes are inherently expensive (perhaps because they are large, or less
stable, or require scarce co-factors), one might expect these “cost” constraints to
result in the evolution of slower enzymes.

Each of ihese caveats is a complication that, if taken too seriously, will discourage
experimental work. Thus, the model presented here should be regarded as a working
hypothesis. Measurement of the detailed thermodynamic behavior of enzymes is a
probe into the heart of the catalytic phenomenon. The ability to make predictions
should aid significantly in advancing our understanding of enzymes, and how they
evolved to their present state.,

We are indebted to Professor F. H. Westheimer, Professor D. Arigoni, and Dr Simon
Moroney for reading several versions of the manuscript and providing many helpful comments
and criticisms. We are also indebted to Professor J. R. Knowles and members of his group
for much stimulating commentary.
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