
Function–structure analysis of proteins using
covarion-based evolutionary approaches:
Elongation factors
Eric A. Gaucher*†, Michael M. Miyamoto‡, and Steven A. Benner*

*Department of Chemistry and Molecular Cell Biology Program, College of Medicine, University of Florida, Gainesville, FL 32611-7200;
and ‡Department of Zoology, University of Florida, Gainesville, FL 32611-8525

Communicated by Walter M. Fitch, University of California, Irvine, CA, November 8, 2000 (received for review July 26, 2000)

The divergent evolution of protein sequences from genomic
databases can be analyzed by the use of different mathematical
models. The most common treat all sites in a protein sequence
as equally variable. More sophisticated models acknowledge
the fact that purifying selection generally tolerates variable
amounts of amino acid replacement at different positions in a
protein sequence. In their ‘‘stationary’’ versions, such models
assume that the replacement rate at individual positions re-
mains constant throughout evolutionary history. ‘‘Nonstation-
ary’’ covarion versions, however, allow the replacement rate at
a position to vary in different branches of the evolutionary tree.
Recently, statistical methods have been developed that high-
light this type of variation in replacement rates. Here, we show
how positions that have variable rates of divergence in different
regions of a tree (‘‘covarion behavior’’), coupled with analyses
of experimental three-dimensional structures, can provide ex-
perimentally testable hypotheses that relate individual amino
acid residues to specific functional differences in those branches.
We illustrate this in the elongation factor family of proteins as
a paradigm for applications of this type of analysis in functional
genomics generally.

E longation factors Tu (EF-Tu) and 1a (EF-1a) are homol-
ogous proteins essential to translation in bacteria and

eukaryotes, respectively (1, 2). These GTPases catalyze the
binding of aminoacyl-tRNAs to the A-site of the ribosome.
As they are among the slowest evolving proteins known, EFs
are commonly used to study cellular functions (2–4) and
to root the universal tree of life (5, 6). This sequence stability
presumably ref lects enormous functional constraints on
the divergent evolution of EFs, highlighting their central role
in translation since the last common ancestor of the three
primary domains of life (7). Nevertheless, EF-Tu and EF-1a
differ in several of their specific functions (1, 2). For example,
bacterial EF-Tu binds GDP '100-fold tighter than GTP.
Eukaryotic EF-1a, in contrast, binds both with similar
affinities. EF-Tu regenerates its active form by binding to the
single-subunit nucleotide exchange factor EF-Ts. EF-1a re-
quires the multisubunit nucleotide exchange factor EF-1bgd.
EF-1a also interacts with the eukaryotic cytoskeleton
and thereby may play a role in cellular transforma-
tion and apoptosis (2, 3). EF-Tu can have no such role in
bacteria.

These shifts in function must correspond at some level to
changes in protein sequence. Thus, functional changes can
leave signatures in the sequences of a protein family, which
then can be detected with a well-constructed history of their
relationships and replacements. In many cases, it appears
possible to identify this record from the background noise of
molecular evolution. In alcohol dehydrogenase (8) and super-
oxide dismutase (9), for example, previous studies have shown
that variable replacement rates at specific positions can

generate inferences relating changes in sequence structure
to those in function. These proteins, however, have diverged
far more rapidly than EFs. Furthermore, these studies have
used neither the full power of a mathematical evolutionary (8)
nor a crystallographic (9) analysis. We show here how this
combination is of value in functional genomics, even in
proteins not generally regarded as good examples of functional
divergence.

From a mathematical perspective, the most common way to
model rate heterogeneity among sequence positions is the
gamma distribution, with its shape parameter a (10, 11). This
distribution can accommodate a wide range of rapidly and
slowly evolving sites. However, this model assumes a stationary
substitution process, whereby positions retain their same rel-
ative rates of change throughout evolutionary history. This
assumption is not expected to hold entirely true for proteins
that change function. As an alternative, the covarion model
proposes that the replacement rates of amino acid positions
can change over time (9, 12–15). Although EFs might be
expected to follow only a gamma model, given their overall
functional conservation, previous studies have instead sug-
gested that a covarion process is needed to adequately describe
their evolution (5, 16, 17). This conclusion is examined more
closely in this study and forms the basis of our integrated
evolutionary and structural biology analyses of functional
divergence between EF-Tu and EF-1a.

Methods
Thirty EF sequences were aligned by DARWIN (8) and then
modified according to the secondary structures of EF-Tu for
Escherichia coli (Protein Databank accession number 1EFC;
ref. 18) and Thermus aquaticus (Protein Databank accession
number 1TTT; ref. 19). This approach resulted in a multiple
sequence alignment (MSA) with 380 aligned positions (cf. ref.
17). Maximum likelihood (ML) estimations of a and the
replacement rates per site for all 380 aligned positions of
EF-Tu versus EF-1a were accomplished with PAML, version
2.0, and its implementation of the Jones, Taylor, and Thorton
model, with rate heterogeneity among sites according to the
gamma distribution (JTT-G) (20). The Proportional, Poisson,
and Dayhoff models for protein sequences were rejected as less
appropriate for EFs on the basis of their log-likelihood ratio
tests (21). The phylogeny in these ML analyses followed
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that of Bauldauf et al. (6), except for the topological positions
of Chlorobium and Salmonella. As Bauldauf et al. (6) did
not consider these two species, their topological positions
were based on our follow-up ML analyses with MOLPHY,
version 2.3 (22).

Parametric bootstrapping (evolutionary simulations) was
conducted with PAML to calculate the SD of the a estimates for
bacteria alone, eukaryotes alone, and the two groups com-
bined (23). These simulations (20 per group) relied on the
accepted tree and subtrees of bacteria and eukaryotes, their
ML estimates of branch lengths and a, and the JTT-G model.
In turn, subsampling experiments with bacteria alone, eu-
karyotes alone, and the two groups combined were completed
to test for sample-size effects on their estimations of a (24). In
these experiments, 20 random subsets apiece were generated
for all odd-numbered subsamples from 5 to 11, 13, and 27 for
bacteria, eukaryotes, and both groups, respectively. The a
parameter then was reestimated for each random subsample
for the same ML conditions as before. In recognition of their
greater numbers, the subsampling trials with the two groups
combined were stratified such that an extra eukaryotic se-
quence was selected relative to bacteria.

Normal distributions, sample kurtosis, skewness, and nor-
mality tests all were determined with SASyGRAPH, release 6.03
(25). Visualization of protein structures was accomplished
with CHEMSCAPE CHIME, release 2.0.3 (www.mdli.com) and
PROTEIN EXPLORER, release 1.46 (www.umass.eduymicrobioy
chimeyexplorer).

Results and Discussion
Covarion Analyses, Structural Biology, and Hypothesis Generation.
Our ML analyses of EF-Tu and EF-1a revealed a nonstationary
a for different regions of the tree (Fig. 1). An a of 0.78 was
calculated for the entire tree, with a SD of 0.05 from parametric
bootstrapping. In contrast, the a values for both the bacterial and
eukaryotic subtrees were significantly lower [a 5 0.46 (0.04) and
a 5 0.38 (0.04), respectively]. Thus, a more uniform distribution
of rates among sites was suggested when the two groups were
considered together, rather than separately. Gu (14) statistically
proved that such an increase in a is expected when the variable
positions of one group are not the same as those of another (i.e.,
when the sequences are evolving under a nonstationary covarion
process).

The distribution of rate differences per site between bacterial
and eukaryotic EFs was leptokurtotic, i.e., over- and under-

Fig. 1. Accepted phylogeny for bacteria and eukaryotes used in the ML analyses of their EF-Tu and EF-1a sequences. These sequences are from SWISS-PROT,
with their accession numbers given in parentheses next to their species. Brackets refer to the amino acids of the two groups at position 305, a site illustrating
a covarion pattern of sequence conservation in bacteria but considerable variation in eukaryotes. Branch lengths of this tree are drawn proportional to their
ML estimates, except for the two longest internodes leading to bacteria and eukaryotes (both 1.30 replacements per site). The total tree length is 7.34
replacements per site (2.54 and 2.37 replacements per site for bacteria and eukaryotes alone, respectively). Numbers above internal branches represent the ML
estimates of a for the corresponding group or subgroup of bacteria andyor eukaryotes. Standard deviations, as calculated from 20 rounds of parametric
bootstrapping, are given in parentheses for the a values of bacteria, eukaryotes, and the two groups combined.
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represented in the mean and tails versus ‘‘shoulders,’’ respec-
tively, relative to the expectations of a normal distribution (Fig.
2a). Nearly 50% of the positions had essentially the same rate in
the two groups (rate differences of ,0.5 replacements per site
per unit evolutionary distance), as expected under a stationary
gamma process. However, 17 sites were evolving .2 SD faster in
bacteria than eukaryotes, whereas 19 were changing .2 SD

faster in eukaryotes than in bacteria (Fig. 2b). These sites
representing 10% of the MSA are suggestive of a covarion
process in the EF-TuyEF-1a family.

By integrating structural data with these ML rate differ-
ences, this initial pool of 36 sites can be further reduced to a
subset of those positions that are most likely involved in the
functional shifts between EF-Tu and EF-1a. For example, 10
sites in and around the region binding tRNAs are evolving .2
SD faster in either bacteria or eukaryotes (Figs. 2b and 3).
These rate changes can be correlated with a difference in
biochemical function between EF-Tu and EF-1a. EF-1ayGDP
binds charged and uncharged tRNAs, whereas EF-TuyGDP
does not. Crystallographic data for EF-Tu reveals a major
conformational shift between the GDP- and GTP-bound
states, whereby the tRNA-binding site of the former is dis-
rupted (Fig. 3b). In contrast, available data for EF-1a suggest
that this conformational shift does not occur (see ref. 2 for a
review). This correlation between rate differences and protein
structure–function leads to the hypothesis that at least some of
these 10 positions are responsible for the different interactions
of EF-Tu and EF-1a with tRNA. This hypothesis can now be
tested by introducing into EF-1a the residues of EF-Tu at these
positions (26). The prediction is that these introductions will
result in a variant of EF-1ayGDP that does not bind uncharged
tRNA.

Similarly, eight sites in and around the region where nucleo-
tide exchange factors bind are evolving .2 SD faster in eu-
karyotes than in bacteria (Figs. 2b and 3). EF-Tu regenerates its
active form by binding to the single-subunit nucleotide exchange
factor EF-Ts, whereas EF-1a depends on the multisubunit
EF-1bgd. The rate differences for these eight sites lead to the
hypothesis that the surface area of EF-1a in contact with its
nucleotide exchange complex is different from that for EF-Tu.
This difference is consistent with the divergent structures of their
respective nucleotide exchange factors (1, 2).

Perhaps the most intriguing functional difference between
the two EFs is the ability of EF-1a to bind to actin, the main
component of the eukaryotic cytoskeleton. This function,
together with the ability of EF-1a (but not EF-Tu) to bind to
uncharged tRNAs, may be important as a mechanism for
tRNA channeling from the ribosome back to the nucleus
(2, 27). Bacteria, of course, do not require channeling, thereby
obviating the need for binding of uncharged tRNAs by either
the GDP or the GTP state of EF-Tu. Relatively rapid sequence
evolution is a general characteristic of surface residues that
are not involved in protein–ligand interactions (28). Nine
surface residues to which other contacts cannot be definitively
assigned from biochemical and structural data were evolv-
ing .2 SD faster in EF-Tu than in EF-1a (Figs. 2b and 3b).
These rate differences suggest the hypothesis that at least
some of these residues in EF-1a are in contact with the actin
cytoskeleton.

Positions 32–36 are conserved in EF-1a but variable in EF-Tu
(Figs. 2b and 3b). In EF-Tu, biochemical and three-dimensional
structural data show that this region is in proximity to the
ribosome (29, 30). In EF-1a, positions 32–36 are followed by an
insertion that is suggestive of a binding site with its characteristic
charged amino acids and hydrophobic residues. In combination
with its conserved residues 32–36, this insertion is predicted to
introduce a regular secondary structural element of an a-helix
(8, 31) that may reflect a difference in ribosomal structure and
binding between bacteria and eukaryotes. Thus, another testable
hypothesis is suggested by the integration of rate differences with
protein structure and function.

How robust are our hypotheses with respect to the current
sample of sequences? This question follows from the recent
demonstration by Sullivan et al. (24) that ML estimates of rate
variation among sites may be sensitive to taxon sampling. In

Fig. 2. Rate differences per site between bacteria and eukaryotes. (a)
Histogram of the site-by-site rate differences for the 380 aligned positions
of bacteria minus eukaryotes. Sample kurtosis and skewness measure the
‘‘peakedness’’ and asymmetry of the histogram relative to the superim-
posed normal distribution, respectively (25). (b) Amino acid positions in the
left and right tails of the histogram (i.e., those with rate differences of .2
SD between the two groups). Numbering refers to positions in the MSA. a,
b, and L refer to a-helices, b-strands, and loops, respectively, following the
three-dimensional structure of EF-Tu (Fig. 3).
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our subsampling experiments, estimates of a were found to be
upwardly biased for the smaller samples of all three groups
(Fig. 4). Nevertheless, the same major difference between
bacteria and eukaryotes alone versus combined was evident,
regardless of the sample size. Also, a remained largely un-
changed (within the range of statistical error) with the inclu-
sion of 40 and 15 additional sequences from SWISS-PROT for
bacteria (0.48) and eukaryotes (0.35), respectively. Given our
initial focus on the f luctuating estimates of a for bacteria and
eukaryotes, our study did not consider Archaebacteria. How-
ever, our more recent investigations of EFs document that this
group is defined by an a (0.88) that is more similar to the
combined estimate for bacteria and eukaryotes than to their
separate values. Collectively, these various results argue
against sampling error as an explanation for the nonstationary
behavior of a for EF-Tu versus EF-1a.

Covarion Approaches and Functional Genomics. Functional genom-
ics is the bridge between computational and experimental
biology (32, 33). The field combines sequence data with general
knowledge to generate testable hypotheses about the biological
functions of genes and proteins. Today, most hypotheses in the

field are generated from sequence similarity searches with BLAST
(34) or FASTA (35). The function of the probe sequence is
assumed to equal that of the best annotated hit that is recovered
in these similarity searches.

Functional genomics is actively seeking tools to detect changes
in protein function from their sequences and estimated history
(14, 36). The best-known approach for this purpose uses the ratio
of nonsynonymous to synonymous substitutions to identify po-
tential cases of functional change (36–38). This approach, how-
ever, suffers as a signature of functional change among distant
branches, because silent sites quickly lose their signal as they
become saturated with substitutions. Shifts in protein function
can also be deduced from instances of convergent or parallel
evolution (39). In turn, functional constraints can be detected as
compensatory covariation, whereby different residues in contact
are sequentially replaced in a way that conserves some overall
physical property (40).

The covarion approach now offers another tool for studying
the evolution of protein function (14). Variability is a feature of
a position that reflects its relation to selected function. Thus,
changes across groups in the variability of their sites offer
insights into which positions of a protein may be most responsible

Fig. 3. MSA for EFs and tertiary structures for EF-Tu. (a) MSA for the ligand-binding region at the NH2 terminus of three representative bacteria and three
eukaryotes (Upper and Lower, respectively). This MSA highlights the key residues for aminoacyl-tRNA (red), EF-Ts (green), and nucleotide (yellow) binding and
for kirromycin resistance (cyan), as determined for bacterial EF-Tu (1, 18, 19). Arrows, above and below the MSA, correspond to those sites that are evolving .2
SD faster in bacteria than in eukaryotes, and vice versa, respectively (positions 67, 69, 102–103, 117, 123, 131, 133, and 135) (Fig. 2). (b) Tertiary structures of the
GDP- and GTP-bound states for EF-Tu from E. coli and T. aquaticus, respectively (18, 19). Here, green and red in the GTP confirmation highlight those sites that
are evolving .2 SD faster in bacteria than in eukaryotes, and vice versa, respectively (Fig. 2).
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for its functional shifts. If the variability of many positions
changes, then the inference can be made that the protein has
acquired a new function (or lost its function). However, this study
with EFs illustrates how much our concept of function is
contingent on one’s perspective and how subtle such shifts can
be. In detail, EF-Tu and EF-1a function in different ways, even
though their overall role in translation has remained the same.
These more subtle but nevertheless significant functional differ-
ences involve on the order of 10% of the sites according to our
covarion analysis (Fig. 2).

Our approach integrates structural data with a covarion-based
evolutionary analysis to improve the identification of those
relatively few sites that are largely responsible for the functional
differences between EF-Tu and EF-1a. Together, these two
sources of information allow us to target specific positions and
residues for the direct experimentation of their effects on the
function of EFs. Of particular interest are the surface residues
that are evolving .2 SD slower in eukaryotes than in bacteria
(Fig. 2). If confirmed by direct testing, the involvement of at least
some of these sites in binding EF-1a to actin would constitute
one of the only examples where metabolic channeling, long an
issue in central pathways, has left a signature in the sequences
themselves (41). It is as a tool for hypothesis generation and
experimental design that covarion-based evolutionary studies,
coupled with structural biology, will make their greatest contri-
butions to functional genomics.
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