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Introduction

The 1990s was the decade of the genome. Today, complete draft sequences are
available for the genomes of many eubacteria, several archaebacteria, several
unicellular eukaryotes, several plants, and a growing collection of animals, including
C. elegans (a worm), the fruit fly and mosquito, the mouse, and human.
As these sequences have accumulated, it has become increasingly apparent that

new methods are needed to exploit the information that they (must) contain. Organic
chemistry has always been driven by the discovery of new natural products,
elucidation of their structures, and exploration of their behaviors. Gene sequences
are no more (and no less) than the structures of natural products responsible for
inheritance. The genome database, and the corresponding protein sequence
database, therefore provide a new collection of natural product structures to study.
These display every behavior of interest to chemists: conformation, supramolecular
organization, combinatorial assembly, and catalysis are just a few.
At the same time, biomedical scientists are hoping that new insights into biology,

disease, and treatment will be extracted from this collection of sequence data. They
are adding to the data, comparing the expressed genetic inventory of diseased
and normal tissues, and attempting to correlate genomic data with physio-
logical function. Biomedical science should be revolutionized by genomic data. But
how?
Genomic projects also present opportunities for the emerging fields of

Geobiology, Planetary Biology and Astrobiology. Geobiology and Planetary
Biology seeks to understand the relation between living organisms and their global
environment. The history of life on Earth cannot be separated from the history of the
planet. Each has defined the structure of the other. A major, almost visionary (at this
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time) avenue for research seeks to combine the disparate traditions in molecular and
physical sciences with a wealth of data from Natural History.
Astrobiology is defined as the study of the origin, evolution and distribution of life

(including life on Earth) within the context of cosmic evolution. With the recent
advances in planetary science, including landing on Mars and close inspection of the
moons of Jupiter, specific features of terrean biochemistry have become important to
astrobiology. In particular, it is important now to distinguish features of terrean life
that reflect unique solutions to problems presented by life (in general) from those
that do not. The first are likely to be mirrored in life that originated independently
on other planets; the second are not. Unique solutions are likely to arise from
constraints imposed by fundamental chemical reactivity (assumed to be universal)
and Darwinian processes that drive organisms to optimize chemical behavior, also
assumed to be universal. Astrobiological research with terrean genomes is needed to
identify and distinguish chemical features of terrean life that reflect selection, neutral
drift, and origins (Hey, 1999).
One consequence of large genomic databases is the ready availability of the

evolutionary histories of families of proteins represented within the global proteome.
After all of the genomes of all of the organisms on Earth have been sequenced, all of
the encoded proteins will be recognizably built from ca. 105 independently evolving
protein sequence ‘‘modules’’ (Riley and Labedan, 1997). For each of these, an
evolutionary history can be built to include (a) a multiple alignment of the sequences
of the proteins and genes in the module themselves, (b) an evolutionary tree, and (c)
a reconstructed ancestral DNA and protein sequence for each branch point in the
tree. Given a detailed model of biomolecular evolution, these histories can be used to
connect sequence, structure, chemical reactivity, and biological function.
Over the past decade, we have used Advances in Enzyme Regulation and its

associated conference to lay out tools that exploit evolutionary analysis of sequence
data to solve problems in biological chemistry. These have included methods to
identify functional regions of protein structure (Benner, 1989), methods that predict
the conformation of proteins from a family of homologous sequences, methods that
analyze evolutionary covariation at residues distant in the polypeptide chain, and
methods that use protein structure prediction to detect distant homologs (Benner
and Gerloff, 1991). More recently, we used the Advances venue to lay out tools that
exploit evolutionary histories to extract information concerning protein structure,
behavior, and function from a detailed understanding of how protein sequences
divergently evolve under functional constraints (Benner et al., 1998). In a post
genomic world, with volumes of sequence data from an unlimited number of
organisms, these tools will be used to learn more from sequence data about living
systems, their chemistry and their diseases.
We return again to this venue to describe the next generation of tools needed for

interpretive proteomics. The first purpose of this lecture is to outline the nature of
the tools and resources that are required to support an evolutionary analysis of
genomic sequence data. Its second purpose is to provide the strategies and tactics that
are needed to apply these tools. Its third purpose is to provide examples of where
these tools, strategies, and tactics have been used to solve problems in biomedicine.
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The time available for this lecture will limit the detail of the discussion.
Fortunately, Advances in Enzyme Regulation has no page limits. For the written
version of this lecture, therefore, we are limited only by the time that we have until
the submission deadline that has been presented by the publisher. Even this has
proven shorter than desirable. Therefore, we have been able to provide only part of
the background of interest to the biomedical researcher. Much of the details must be
found in references that we make to our previous work in the published and patent
literature (Benner et al., 1998, 2002).

Tools and resources

The Role for Statistical and Mathematical Models in Interpretive Genomics and

Proteomics

In its October 26, 2000 article entitled ‘‘Cool Jobs and How to Get Them’’ (Seth
Stevenson, p. 104), the magazine Rolling Stone noted that a bioinformatics major
was perfect for those who ‘‘want to cash in on the biotech gravy train without having
to learn too much heavy science.’’
In this single sentence, Rolling Stone offered another of its penetrating

insights into modern popular culture, capturing a paradox at the heart of
contemporary bioinformatics. By ‘‘science,’’ Rolling Stone was referring to the
large body of empirical data describing how cells, tissues, organs, and organisms
meet the challenges presented by their environments as individuals struggle
to survive and reproduce. Another part of ‘‘science’’ is chemical, and concerns
the molecules that help living systems meet these challenges. For two centuries
in organic chemistry, and much longer in biology, the science has developed
in its modern form by observation, theory, intuition, hypothesis, and
experiment.
If the past can be used to anticipate the future, almost all of the tools that will be

used to exploit genomic sequence data will come from ‘‘science.’’ Few of the
interesting features of the chemical structures found in biology will be captured by
the statistical models that form the core of the studies of the student of
bioinformatics. In part, this outlook reflects the well-recognized weakness of
statistical methods relative to the complexity of the chemical and biological datasets.
It also recognizes that the connection between chemical structure (a.k.a. ‘‘sequence’’)
and molecular conformation, behavior, is far beyond the capabilities of any formal
mathematical model at the present time.
The behavior of molecules (including protein molecules) is not correctly called

‘‘chaotic.’’ All chemists (perhaps by faith) believe that the rationale connecting
chemical structure with chemical behavior ultimately will be formally describable.
But that formalism is far away. Further, as with all organic molecules, small changes
in the structure of proteins can have either no detectable impact on behavior, or
dramatic impact. The impact of changes at one site can be determined entirely by
changes at other sites, or not at all.
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This reality carries a clear message to students wishing to exploit genomic
sequence data today. From a practical perspective, it is both desirable and necessary
to use less rigorous methods with a bit of formal mathematical models. Statistics and
mathematical formalisms are simply the handmaiden of humans as they do the
activities that humans excel in (pattern recognition, intuition, conjecture, hypothesis,
insight, and experiment).
We do not mean by these comments to disparage the contributions of statisticians

or statistical models in bioinformatics. Some of our best friends are statisticians.
We ourselves use statistical formalisms, develop them, and appreciate their power.
We do mean, however, that statistical approaches must be used appropriately.
Further, non-statistical methods should not be criticized because they do not meet
the standards of rigor that are typical in mathematics. To do so would slow the
application of genomic sequence data to biology and biomedicine.
One of the best ways to use formal mathematical models in bioinformatics is to

recognize that they (generally) treat gene and protein sequences as if they were linear
strings of letters, lacking either form (fold) or the functional behavior that comes
with the fold (Benner, 2002). Such formalisms can serve as null hypotheses, models
for how genes and proteins would divergently evolve if they were formless,
functionless strings of letters. By observing how genes and proteins actually
divergently evolve, and comparing the observations with the null hypothesis, a signal
concerning form and function can be extracted. Thus, formal mathematical models
for sequence evolution serve as invaluable starting points for functional analysis of
gene sequences.
This insight laid the foundation a decade ago for the first set of tools that

convincingly predicted the folding of proteins from sequence data alone (the
‘‘protein structure prediction problem’’) (Benner and Gerloff, 1991). Given a set of
sequences of homologous proteins diverging under functional constraints, patterns
of variation and replacement that are different from those anticipated by simple
statistical models allow the identification of sites containing amino acids whose side
chains protrude from the surface of the protein, those that are found inside the
folded structure, and those that are near the active site. Correlation of patterns of
replacement between positions nearby in the sequence makes it possible to assign
elements of secondary structure, alpha helices and beta strands, to segments of the
protein. Correlation of patterns of replacement at sites distant in the linear sequence
provides information about how the protein folds (Benner and Gerloff, 1991).
The power of evolutionary-based tools that use formal mathematical models as a

null hypothesis has been demonstrated in a large number of bona fide predictions of
protein structure, those made and announced before an experimental structure was
known. The first of these, for protein kinase, was reported on these pages (Benner
and Gerloff, 1991). The evolution-based strategy has been applied to a large number
of additional proteins, including the hemorrhagic metalloproteinase (Gerloff et al.,
1993), ribonucleotide reductase (Tauer and Benner, 1997), heat shock protein 70
(Gerloff et al., 1997), phospho-beta-galactosidase (Gerloff and Benner, 1995), and
synaptotagmin (Benner et al., 1995), the last three within the context of the project
known as a Critical Assessment of Structure Prediction (CASP). In each case, these
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predictions have been sufficiently accurate to solve specific biological problems
associated with the protein family. These are reviewed elsewhere (Benner et al.,
1997).
A directly analogous type of evolutionary analysis allows biological scientists to

infer functional information from a set of aligned homologous sequences. Indeed, in
many cases, structure prediction is the first step in this chain of inference. Many of
these inferences are at the level of hypothesis, of course.
In each case, however, a formal description of evolutionary processes is not

valuable because it does capture the details of proteins sequence evolution, but
rather because it does not. It therefore serves as a null hypotheses. Comparing how
proteins actually divergently evolve with this hypothesis generates a signal that
provides information about function.
In the discussion below, we use formal models in the context of insight, intuition,

and non-formal models to build a broad suite of tools, tactics, and strategies to
interpret genomic sequences. This suite is known by the rubric Firebird (Functional
Inference from Reconstructed Evolutionary Biology). The Firebird suite of tools
offers a powerful framework for analyzing function in proteins, identifying targets of
biomedical interest, and guiding pre-clinical drug development in animal models,
inter alia. When applied to whole genomes, the framework identifies metabolic
pathways and regulatory networks, permits the correlation of the life history of a
lineage with its historical past, and captures interconnections that will move the
biomedical researcher and biological chemist from the genome to the planet.
The only metric for evaluating this combination is whether it is useful to the

biological and biomedical researcher. This, in turn, is done through applied use.
There is no metric that a statistician would approve for measuring success. But for
the biological and biomedical research communities, this is how success must be
measured.

Aligning Two Protein Sequences. Simple Formalisms

We assume that a fraction of our readers is not familiar with the basic models that
describe the divergent evolution of protein sequences. We therefore outline these
here. The more advanced reader might wish to skip this section.
Even in the 1960s, when very few sequences were available, tools were sought to

compare two protein sequences with the purpose of asking the question: Are these
two sequences related by common ancestry? To answer this question, the two
sequences needed to be aligned, where the correct alignment matches amino acids in
the two sequences so that the matched amino acids were true descendants of a single
amino acid in the ancestral protein.1

1An entertaining collection of examples where statisticians, attempting to impose statistical formalisms

upon science, have slowed progress in biomedical research can be found in peer review settings. For

example, one statistician suggested that tools to develop hypotheses should not be funded unless he could

first assess ‘‘the reliability of the hypotheses’’ that would emerge. This request, of course, is risible for an

experimental scientist, who knows that the value of a hypothesis in science relates more to its experimental

testability than to its reliability. Indeed, some of the most valuable hypotheses in science have been wrong.
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As the historical past was considered to be unknowable, the alignment task came,
in practice, to be the task of aligning two sequences with a scoring matrix in a way
that identifies the alignment giving the best score. Algorithms that produced such an
alignment were adapted for protein sequences by Needleman and Wunsch (1970),
and by Smith and Waterman (1981).
The availability of these algorithms encouraged the development of 20� 20

matrices that give the probability of two amino acids being matched in a sequence
alignment by reason of common ancestry, divided by the probability that the two
will be matched by random chance. This effort was pioneered by Margaret Dayhoff
and her group at the National Biomedical Research Foundation.
Key to this scoring was the concept of a ‘‘distance’’ between two protein

sequences. The distance was a measure of the number of amino acid replacements
per site. Its calculation required the development of a model of sequence evolution,
which we will call here the Standard Model.
Consider a protein sequence exactly 100 amino acids in length. Let us assume that

each of the 20 amino acids is equally likely to be at each of the 100 positions in the
sequence. This means that on average, each of the amino acids will appear in the
sequence five times.2

Now, let us assume that the protein suffers duplication. The duplicates are, by
definition, 100% identical. We now allow one of the duplicates to suffer
replacements. Let us replace one amino acid in one sequence (we will call it the
‘‘diverging sequence’’) by another of the 20 standard amino acids. We will chose the
site of the replacement at random (meaning, in this case, that the probability of any
individual site suffering a replacement is 0.01). We will also assume that each of the
19 amino acids is equally likely to make the replacement.
Following this single replacement in one of the duplicates, the two proteins are no

longer identical in sequence. In fact, the two sequences are now 99% identical. More
conveniently, we will refer to the ‘‘fractional identity’’, and represent this by a
number that can range from zero to unity. Here, fractional identity is 0.99. We will
call the distance between the two proteins as being 1 PAM unit, which means that
they have suffered one Point Accepted Mutation in the time since they diverged.3

Now, allow the diverging sequence to suffer another replacement. Again, the
site suffering the replacement is chosen at random; each of the sites has a 0.01
likelihood of changing in the second cycle of replacement, with the site that suffered
a change in the first cycle no more likely to suffer change in the second. Again, the
replacing amino acid is chosen at random; each of the 19 other amino acids is equally
likely to appear at the site after the second round of replacement. What is the
percentage identity between the two diverging sequences after two cycles of
replacement?

2Technically, proteins p1 and p2 cannot not correctly be said to be descendants of p; more correct is to

say that the genes that encode proteins p1 and p2 are descendants of the gene that encoded p. The

expression creates no confusion, however, and we will use it with the meaning stated here..
3For any particular sequence, of course, the number of amino acids is distributed around this 5%

expectation value.
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Naively, one might say that the two sequences will be 98% identical, as one
sequence has diverged by two PAM units. In fact, this is not exactly the case, if a
standard stochastic model for sequence evolution is followed. There is a 99% chance
that the second site in the diverging sequence to suffer a replacement, chosen
randomly, will be different from the first site that suffered a replacement. In this case,
the percentage identity of the two sequences following the second round of
replacement will be 98%. But there is a 1% chance that the second site chosen will be
the same as the site that suffered a replacement in the first round of replacement.
And if the same site suffers a second replacement in the second round, then there is a
1 in 19 chance (P=0.05263) that the replacement will restore the original amino acid
to that site. As a consequence, after two replacements, the diverging protein will have
an expectation value of more than 98% sequence identity; the precise value is
98.0105% identity.
This number 98.0105% is not very different from 98.0000%, of course. But as

the sequences diverge through further rounds of replacement, the odds increase that
the next replacement will occur at a site that has not already suffered a replacement,
and therefore not further differentiate the derived sequence from the original
sequence. Likewise, the odds increase as replacement continues that the round of
replacement will restore the amino acid found at that position in the original
sequence.
For this reason, the percent identity between two diverging sequences is not a

linear function of the number of replacements. Indeed, after suffering a large number
of replacements, the sequence will reach an ‘‘equilibrium.’’ At the equilibrium, the
likelihood of a replacement restoring the amino acid found in the original sequence
becomes equal to the likelihood that a replacement will make the descendent still
more dissimilar from the parent. If the 20 amino acids are introduced/lost with equal
frequency, this equilibrium will be achieved when the sequences are 5% identical.
This level of identity is shared, of course, between two random sequences that are
composed of 20 amino acids, chosen with equal frequency.
This process is well understood as an ‘‘approach to equilibrium’’ problem. After

an indefinitely large number of replacements, the two sequences will be 5% identical.
Under these circumstances, an additional replacement has a 95% chance of affecting
a site that distinguishes the two sequences, with a 1 in 19 chance of increasing
similarity. At equilibrium, the probability of a replacement increasing similarity is
the same as the probability of a replacement decreasing similarity. The result is, in a
word, equilibrium.
Fig. 1 shows a correlation between percentage identity and PAM distance. In

practice, one can use the curve to determine the PAM distance between any two
sequences. One simply determines the percentage identity, goes to the figure, finds
the percentage identity on the y-axis, and reads off the PAM distance on the x-axis.
The assumption that all amino acids occur with equal frequency, and that all

replacements were equally likely, is clearly incompatible with reality in natural
protein sequences. In natural protein sequences, some amino acids are more
abundant than others, and some replacements evidently occur with higher
probability than others. The relative abundance of different amino acids (and the
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redundancies in their coding systems) is shown in Table 1, extracted from a recent
version of GenBank.
Dayhoff therefore enhanced the model to reflect different likelihoods that different

amino acids would occupy any particular site, assuming that occupancy at any site
mirrored the occupancy of the average site. She collected a set of aligned protein
sequence pairs, for proteins whose sequences had only slightly diverged (let us say for
sake of discussion, by one PAM unit). Dayhoff tabulated the probabilities of all of
the Ai/Aj matches in her set of aligned protein sequence pairs. From these she built a
20� 20 matrix showing the probability of each Ai being matched to every other in
her dataset. The matrix terms Mi,i reflected the probability that the match was an
identity; the matrix terms Mi,j reflected the probability that the match was a non-
identity.
To obtain a scoring matrix that could be used in a dynamic programming

algorithm, Dayhoff then modelled the probability that Ai would be matched to Aj by

Fig. 1. Percent identity between two sequences falls off asymptotically with increasing number of

mutations, which are measured by the PAM (point accepted mutations) distance between two sequences.

Given a simple stochastic model for amino acid replacement (all sites suffer replacement independently,

patterns of replacement are time-invariant, all 20 amino acids equally represented in the sequence), after

infinite time, the two sequences will have reached an equilibrium identity of 5%.

Table 1

Frequencies of 20 standard amino acids in protein sequencesa

9.14% Leu 7.20 (average) 6.23% Glu 4.12 (average)

7.23% Ser 6-fold 5.80% Lys 2-fold

5.22% Arg 5.19% Asp

4.39% Asn

7.58% Ala 6.47 (average) 4.17% Gln

7.18% Gly 4-fold 3.93% Phe

6.48% Val 3.24% Tyr

5.94% Thr 2.25% His

5.18% Pro 1.85% Cys

5.35% Ile 5.35 (average) 2.30% Met 1.83 (average)

3-fold 1.35% Trp 1-fold

aOrganized by number of codons.
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reason of random chance. The likelihood of an Ai/Aj match, under her probabilistic
model, would depend on {Ai} and {Aj}, the frequencies of Ai and Aj in the database
as a whole, fi and fj. She therefore tabulated these from her database. She then
divided every Ai/Aj term by fi and fj, and normalized the data to reflect the changes
estimated for two proteins that had diverged by only one PAM unit. Last, she
constructed a new ‘‘log odds’’ matrix, a 20� 20 matrix that contained the logarithms
of the normalized ratios, and multiplied these by 10.
We can do the same thing for aligned pairs of sequences where the partners have

diverged by more than one PAM unit. We can collect a set of pairwise alignments
where the pairs are ca. 91% identical (having diverged by ca. 10 PAM units) and
repeat the process, generating a replacement matrix that reflects greater divergence,
normalize it for the frequencies of the amino acids in the database as a whole, and
compare it with the theoretical matrix.
This process is indeed feasible, but only to a point. For a replacement matrix to

make biological sense, one needs to be certain that the pairwise alignments that
generate the replacement data match amino acids that are descendants from a single
amino acid in the ancestral protein. This means, in turn, that one needs to be certain
that one has the correct alignment in the pairs of alignments that are used to generate
the replacement matrix.
This is simple enough to ensure when the two proteins are 90% identical, and the

pairwise alignment has no gaps. But once the sequences have diverged further, and
gaps are introduced, the correct alignment is not so clear. At some point, one begins
to worry about whether the sites paired in the alignment are truly homologous. If
they are not, the replacement matrix is tabulating evolutionary non-sense. This, it
turns out from empirical data, occurs in typical proteins as ca. PAM 100–120
(Benner et al., 1993).
Dayhoff took a different approach. She assumed that the patterns of amino acid

substitution are the same in a pair of proteins separated by one PAM and in protein
pairs separated by 10 PAM units. If this is the case, we should be able to simply
multiply the first 1 PAM replacement matrix by itself 10 times to obtain a matrix that
described amino acid matching in two proteins that are 10 PAM units distant. This is
equivalent to raising the PAM 1 matrix to its 10th power.
This was the logic that was used by Dayhoff to construct what is now known as

the Dayhoff matrix for scoring sequence alignments. Dayhoff collected data from
pairs of sequences 5–10 PAM units distant. She then took the replacement matrices
that she obtained, normalized them for amino acid frequencies, and powered them to
get the equivalent of a 250 PAM matrix. She chose this distance because she felt that
this was the most distant sequence that anyone would ever be productively able to
align.
She then noted that this matrix contained a large number of fractional terms.

Recognizing that logarithms are easy ways of representing small numbers (and
anticipating the use of the matrix as a scoring matrix, see next section), she replaced
the terms in the matrix by their logarithms (base ten). She then multiplied these
logarithms by 10, for no good reason except to get a majority of the matrix elements
to lie between 1 and 10. A typical mutation matrix is shown in Fig. 2.
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The i,j element of the Dayhoff matrix arises from an empirical measure of the
probability that amino acids i and j will be matched in an alignment of a pair of
proteins related by common ancestry. Because the terms are normalized for the
frequencies of i and j in the database, they are normalized for the probability that
amino acids i and j will be paired by random chance. Thus, the elements of a
Dayhoff matrix can be viewed as the logarithm of the probability that two amino
acids will be matched by reason of divergent evolution (for the number of PAM units
specified in the matrix) divided by the probability that they would be matched by
random chance.
A Dayhoff matrix can be used to score to a pairwise alignment. Consider a

sequence alignment exactly one position in length, with an arbitrary PAM distance
between them. The Dayhoff matrix element represents the probability that the two
amino acids arose by divergence from a common ancestor at that PAM distance,
divided by the probability that they arose by random chance. Simple enough.
Now consider an alignment of two proteins. If we treat each site as independently

evolving, the probability of the two dipeptides arising from common ancestry,
divided by the probability that they each arose by random chance, is the product of
that probability at the first position in the dipeptide times that probability at the
second position in the dipeptide.
As the Dayhoff matrix records the logarithms of these probabilities, and as the

logarithm of the product of two probabilities is the same as the sum of the
logarithms of the two probabilities. That is, to score the alignment, we add the term
of the Dayhoff matrix for the first position to the term of the Dayhoff matrix for the
second position. This is the logarithm of the probability that the two dipeptides arose
by divergence, divided by the probability that they arose by random chance.
This process can be extended indefinitely. Fig. 3 shows, for example, the alignment

of two segments, both 17 sites long, of the alcohol dehydrogenases from the horse
and the human. Between each is written the number taken from the appropriate i,j
matrix of the Dayhoff matrix in the figure.
The Dayhoff matrix also offers an alternative way to determine the PAM distance

between two sequences. Consider a pair of aligned protein sequences having a PAM
distance of 10. Consider also a series of matrices constructed for proteins separated
by 0 PAM units, 1 PAM unit, by 2 PAM units, by 3 PAM units, and so on, up to
PAM 100. As the PAM distance increases, the scores given to on-diagonal terms
grow smaller, and the scores given to off-diagonal terms grow larger. The score given
to any particular alignment will differ depending on the PAM matrix used. Thus, for

Fig. 3. Scoring an alignment between two segments, each 17 sites long, of the alcohol dehydrogenases

from human and horse. The sum of the terms is 73.2, meaning that the probability of this pairing occurring

by common ancestry, divided by the probability of it occurring by random chance, is equal to 107.32=ca.

2� 107.
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two proteins that are largely identical in sequence, a low PAM matrix will give a
higher score than a high PAM matrix, simply because the low PAM matrix scores
identities higher. Conversely, for two proteins that have few sequence identities, a
high PAM matrix will give a higher score than a low PAM matrix, simply because
the high PAMmatrix scores non-identities higher. The consequence of this is that the
PAM matrix that gives the highest score for a pairwise alignment is the one scaled to
the PAM distance that actually separates the two sequences. Thus, one can
determine the PAM distance by the process of comparing the scores given to the
alignment using different PAM matrices. The PAM of the matrix that gives the
highest score is the PAM distance separating the two sequences. Indeed, from this
process one can also get a variance on the PAM distance, something that is not
possible by simply inspecting the curve in Fig. 1.
The Dayhoff matrix has also been misused. For example, the 250 PAMmatrix was

offered as a default on many sequence alignment programs, and was used to score
the alignments of pairs of protein that had diverged much less. This was incorrect,
although the consequences of using a PAM matrix that does not match the distance
that separates two protein sequences are not usually severe.
Other authors have treated the log odds values for the alignment of amino acids Aj

and Ai as the equivalent of a transition probability for converting Aj to Ai. This
creates a paradox. When constructing a pairwise alignment, the score of Aj matched
to Ai equals the score of Ai matched to Aj. But if these scores are used as transition
probabilities, this equivalency implies that the rate constants ri-j and ri-j are equal,
which implies that the ratio of amino acids in the database at equilibrium {Aj}/
{Ai}=1. This is, of course, not the case, as is captured in another part of the Dayhoff
formalism, where the probability of ratio of Ai being matched to Aj by random
chance is normalized based on an empirical measurement of {Aj} and {Ai} in the
database as a whole.

Simple Models for Comparing Homologous Protein Sequences

Tools to align two protein sequences to assess the likelihood that the two
sequences are homologous must be different from tools that infer the evolutionary
relationships between sequences, or the structure of ancestral proteins. Linus Pauling
and Emil Zuckerkandl pointed out 40 years ago that the sequences of proteins from
modern organisms might be used to construct phylogenetic trees and reconstruct the
sequences of ancestral proteins from extinct organisms (Pauling and Zuckerkandl,
1962). Among their other insights, Pauling and Zuckerkandl pointed out that it
might be possible to resurrect, through chemical synthesis, ancient proteins from
extinct organisms. This task was not achieved for another 25 years, first in our
laboratory (Stackhouse et al., 1990) and independently in the laboratory of the late
Allan Wilson at Berkeley (Malcolm et al., 1990). This represented the start of a new
discipline, known today as experimental paleobiochemistry (Chandrasekharan et al.,
1996).
Pauling and Zuckerkandl had simple models in mind when they proposed the

construction of trees and reconstruction of ancestral sequences, which emerged as a
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procedure of ‘‘maximum parsimony’’. According to the rule of parsimony, the best
tree relating protein sequences to reconstructed ancestral sequences is the one that
obtains the derived sequences from ancestral sequences with the smallest number of
independent evolutionary events. This is illustrated in Fig. 4, where site s in ancestral
protein p holds amino acid residue a if the amino acid residues a1 and a2 at the
aligned positions in the two proteins derived from a, p1 and p2, are the same. If a1
and a2 are different, then no most parsimonious reconstruction exists for site s in the
ancestor; the parsimony algorithm formally fails to provide a reconstruction at that
site.
A variety of software packages provide parsimonious reconstructions of

ancestral states given a set of homologous sequences. One of these is the MacClade
software package (Maddison and Maddison, 1992). Given a set of previously aligned
multiple sequences, and a user-selected tree, MacClade will return (in a colorful
form) models the residues at each site in the multiple sequence alignment at each
node.
A small modification of parsimony procedures creates probabilistic models for

reconstructed ancestral sequences. For example, when a1 and a2 in the two sequences
are different, residue a at site s might be reconstructed as a1 with a 50% probability,
and as a2 with a 50% probability. Alternatively, the reconstructed residue can be
defined for each point along the line connecting a1 and a2. Here the, probability of a1
being present at site s in ancestor a drops smoothly from 1.0 to 0.0, and the

Fig. 4. Reconstruction of ancestral states of leptin in the ancestor of mouse and rat. The ambiguous

reconstrution at site s=4 is resolved with the human sequence as the outgroup.
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corresponding probability that a2 being present at site s in ancestor a increases
smoothly from 0.0 to 1.0, as one proceeds from p1 to p2.
In the post-genomic world, it is more than likely that a sequence of a third protein,

p3, is available that is homologous to p1 and p2. This sequence can ‘‘root’’ the tree
represented by the line between p1 and p2, by identifying the point on the line where
the sequence of the reconstructed ancestral protein is most like p3. It might also
resolve the reconstruction of the sequence of a at the root. Thus, if a3 a3 is the same
as a1, and a1 and a3 are both different from a2, then a=a1=a3aa2. Only when
a1aa2aa3 does parsimony not yield a reconstruction for a. This is illustrated in
Figs. 4 and 5.
More advanced statistical models represent evolution as a dynamic process. In

1989, Brian Seed and his coworkers at the Harvard Medical School applied a
generator to a sequence to describe amino acid replacement within it (Stamenkovic
et al., 1989). The generator has 19� 19=361 parameters, describing the rate
constants for the conversion of each of the 20 amino acids to each of the other 20
amino acids ri-j. Assuming a stationary amino acid composition, where
‘‘stationary’’ means that the composition is unchanged over the period of
evolutionary time captured within the tree, the ratio of the rate constants ri-j/j-i

is equal to the ratio of amino acids in the database {Aj}/{Ai}.

Advanced Statistical Models Needed for Evolutionary Analyses of Protein Sequences

The Standard Model outlined above stands behind most analysis of divergent
evolution in protein sequences. In this model, each site in a protein sequence suffers
replacement independent of every other site. Patterns of replacement are presumed
to be identical at each site, depending only on the specific amino acids involved in the
replacement event. Future replacements are presumed to be independent of previous
replacements.
The Standard Model proves to be only a poor approximation for the reality of

protein sequence divergence. The first exhaustive matching of a modern sequence
database (Gonnet et al., 1992) permitted a large number of empirical studies that
showed how different real protein divergent evolution is from that expected by the
Standard Model.
Various modifications of the Standard Model have been proposed to capture

features of protein sequence evolution that are not captured within the Standard
Model. For example, three decades ago, Fitch and Markowitz pointed out that
different sites in a real protein sequence might be under different selective constraints

Fig. 5. The probabilistic values for the amino acid residue at position 4 of the rat–mouse leptin morph

smoothly along an evolutionary tree from 1.0 (for H) at the mouse leaf to 1.0 (for Q at the rat leaf).
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(Fitch and Markowitz, 1970). At some sites, a replacement might not change the
behavior of the protein detectably, or create a change in behavior that has no impact
on the fitness of the host organism. Natural selection should tolerate replacements at
these sites. At other sites, however, a replacement might destroy the catalytic activity
of the protein (for example). Natural selection should not tolerate replacements at
these sites.
These considerations led to the ‘‘covarion’’ model for protein sequence evolution.

The covarion model recognizes that different sites in a sequence will suffer
replacement at different rates. A statistical model can help capture this feature of the
behavior of real proteins. A single parameter gamma distribution is commonly used
to describe the distribution of mutability at various sites in a protein sequence. This
single parameter is generally written as alpha (a), and describes the shape of the
distribution. This distribution can accommodate a wide range of rapidly and slowly
evolving sites.
The covarion model is extremely valuable when attempting to estimate a distance

between two sequences. If a second replacement is more likely to occur at a site that
has already suffered a replacement than it is at a site that has not already suffered a
replacement, then simple reference to Fig. 1 cannot be used to estimate the number
of replacements that has occurred in the time separating two sequences. System-
atically, a second and third replacement will not lower sequence identity as much as
expected for a second and third replacement given the Standard Model. Reference to
Fig. 1 will systematically underestimate the number of replacements that have
actually occurred relative to the percent identity.
The Standard Model also assumes that each position in a protein sequence suffers

replacement independent of all other positions. Examination of real proteins shows,
that changes at one position are frequently correlated with change at others in the
sequence. A decade ago, for example, we showed that replacements at adjacent sites
were strongly correlated, both in frequency and in kind (Cohen et al., 1994). Indeed,
simple inspection of any multiple sequence alignment shows that replacements are
not randomly distributed along its length (Fig. 6).
Further, the Standard Model assumes that the transformation matrix that

describes the second PAM unit of replacement (or, for that matter, the nth unit of
replacement) is the same as the transformation matrix that describes the first round
of mutation. This assumption is inherent in the notion that one can power the PAM
1 matrix n times to get the PAM n matrix. A decade ago, we showed empirically that
patterns of amino acid replacement at longer distances are not the same as those
patterns at shorter distances (Gonnet et al., 1992). Because the classical Dayhoff
matrix is calculated from pairwise alignments of very similar sequences, the classical
Dayhoff matrix records a pattern of amino acid replacement that is quite close to
that expected from an analysis of the genetic code, and quite different from that
expected from a need to conserve the functional chemistry of amino acid side chains.
Last, real protein sequences can suffer insertion and deletion events, instances

where segments of a protein sequence are added (inserted) or lost (deleted).
Collectively, insertions and deletions are known as ‘‘indels’’, since pairwise sequence
analysis generally does not tell us which process generated a gap. To accommodate
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indels, the Standard Model assigns a probability to indel events, in particular, a cost
for their introduction, followed by an incremental cost as they become longer. This
approach conveniently fits dynamic programming algorithms for aligning sequences,
which is presumably why it is so frequently used. A decade ago, we developed a
different empirical model for gapping (Benner et al., 1993). Most sequence analyses
tools do not use it, however.

Statistical Tools Best for Constructing a Historical Model are Different from Best

Tools to Analyze Function

Many features of real protein sequences diverging under functional constraints are
not captured by the Standard Model. Accordingly, many have attempted to upgrade
the mathematical formalism for divergent sequence evolution to ‘‘inch towards
reality’’ (Thorne et al., 1992). While it is impossible to list all of the heroes of this
effort, work by Yang (Yang et al., 2000), Nei (Suzuki et al, 2001), Felsenstein (2001),
Gu (1999), Huelsenbeck (Huelsenbeck and Rannala, 1997), and Swofford (Swofford
et al., 1996) is useful in many of the applications described below. These are reviewed
by Felsenstein (2001), and captured in several excellent books, beginning with the
one by Nei (1987).

Fig. 6. Alignment of a number of leptin protein sequences. The numbers beneath the multiple sequence

alignment indicate the number of positions found at each site. The short peptide written below the

alignment binds at the active site of the leptin receptor. For the secondary structure, ‘‘h’’=alpha helix.

Even by eye, the variation in the leptin family does not appear to be randomly distributed.
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At one level, advanced tools to capture statistical measures of actual protein
sequence evolution are very useful for reconstructing improved evolutionary
histories for protein families. When distance-based metrics are used to construct
trees, for example, it is helpful if the distances are measured using the most realistic
models for amino acid replacement. Distances calculated with gamma models that
permit different sites to suffer replacements at different rates are therefore likely to
yield better trees (when calculating trees with distance metrics) than those calculated
by simpler models.
As another level, this effort is an attempt to do the impossible: to capture in a

useful way within a statistical framework the individuality of organic molecules.
When interpreting the function of proteins, the individuality of individual amino
acid residues within individual protein molecules is what is interesting. To the extent
that the individuality of a protein, or amino acid in a protein sequence, is captured
within a statistical formalism, that formalism loses its ability to provide information
about the individual contribution of that residue, or that protein, to fitness.
This creates an apparent paradox. The more models abstract within a statistical

formalism the individuality of individual proteins and sites within protein sequences,
the worse they are as a definition of the null hypothesis, the model that describes how
proteins would divergently evolve if they were formless, functionless strings of
letters. Thus, the more enhanced the model is, the more likely it is to obscure the
signal indicating function.
Therefore, the more the statistical model advances, the more valuable it is for

constructing the core evolutionary model, and the less valuable it is in doing
interpretive proteomics. This is, of course, not a problem, as one can chose the model
for the purpose. It is possible even to iterate a cycle, building models for the global
proteome using an inexpensive tool, determining the characteristics of sequence
evolution from the resulting families, refining the model, and then iterating.
The model that is most valuable for generating the null hypothesis is remarkably

close to what Margaret Dayhoff generated three decades ago. This is because it
focused on early steps in evolution, which proved to be code-driven (Gonnet et al.,
1992).
Our task is now to develop tools that analyze protein function by examining non-

stochastic behavior of individual proteins. As with structure prediction, we begin
with a null hypothesis that models the divergent evolution of protein sequences using
statistical models having various levels of sophistication, but in all cases model
replacement rates at individual sites as being independent of replacements at other
sites. They then extract information about function in individual members in
individual protein families by observing how their behavior during divergent
evolution is different from that predicted by the statistical model.

Bioinformatics Workbenches and Databases

Starting a decade ago, we and our collaborators developed a variety of databases
and bioinformatics workbenches to support evolutionary analysis. Perhaps most
important of these is the bioinformatics workbench that we developed in 1990 in
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collaboration with Prof. Gaston Gonnet (ETH Zurich) (Gonnet and Benner, 1991).
Termed Darwin (Data Analysis and Retrieval with Indexed Nucleotide and protein
sequences), this workbench evolved from the symbolic computation platform known
as Maple (http://www.maplesoft.com/), a platform used to organize and search the
Oxford Unabridged English Dictionary (http://bluebox.uwaterloo.ca/OED/index.
html), and a series of databases of biomolecular structure and function that were
managed on personal computers within the Benner group.
Darwin supports the analysis of protein sequences from an evolutionary

perspective. It has now been used in several laboratories, and is available through
the Computational Biochemistry Research Group at the ETH (http://cbrg.
inf.ethz.ch/). Darwin has the distinction of being the first sequence analysis
workbench to be accessible on line via server. Many of its details are describe
elsewhere (Gonnet and Benner, 1991), including in an on-line resource
(http://cbrg.inf.ethz.ch/Darwin/index.html).

Results of evolutionary analysis of genomes

The Exhaustive Matching

An exhaustive matching of a sequence database requires comparing every
substring in the database with every other, or its equivalent. The first exhaustive
matching of a modern sequence database was achieved in 1991 by Gonnet et al.,
(1992) using the Darwin platform. This provided over 1.7 million matched pairs of
homologous sequences, which has served as a valuable resource for understanding
how proteins divergently evolve under functional constraints.
From the exhaustive matching came a comprehensive empirical model for how

amino acids are replaced in proteins during divergent evolution under functional
constraints (Cohen et al., 1994), models describing how segments of polypeptide
chains are inserted and deleted during divergent evolution (Benner et al., 1993), and
the first models describing how amino acid replacement at different sites in the
protein sequence is correlated (Cohen et al., 1994). These, in turn, provided the
database to generate solutions to some of the more perplexing problems in protein
biochemistry, including how to predict the folded structure of proteins from
sequence data, how to detect changing functional behavior in protein families, and
how to detect distant homologs. These have been reviewed previously (Benner, 1998;
Benner et al., 1997), and form the basis for the functional proteomics tools discussed
below.

First Generation Naturally Organized Databases

The exhaustive matching and its various updates provided an estimate that when
all of the genomes of all organisms on Earth are completed, all protein sequences will
be easily recognizable as composed of peptide segments, or modules, that come from
ca. 100,000 nuclear families. A module is defined as a segment of amino acid

S.A. Benner / Advan. Enzyme Regul. 43 (2003) 271–359288

http://www.maplesoft.com/
http://bluebox.uwaterloo.ca/OED/index.html
http://bluebox.uwaterloo.ca/OED/index.html
http://cbrg.inf.ethz.ch/
http://cbrg.inf.ethz.ch/
http://cbrg.inf.ethz.ch/Darwin/index.html


sequence that evolves as a unit (Riley and Labedan, 1997). Typical models are
50–500 amino acids long, and are recognized by comparison of the sequences in the
database itself.
A nuclear family of these is defined operationally as a collection of protein

sequences, all related by common ancestry, that have not diverged beyond the point
where conventional tools fail to provide convincing multiple sequence alignments
(see Table 2).
The limited number of families of proteins on Earth reflects several facts of natural

history. First, all organisms on Earth are descendants of a common ancestor.
Further, the number of possible protein sequences is astronomically large, and
considerably larger than the number of protein sequences that could possibly have
been formed in the limited time (ca. 4 billion years) and space (ca. 1021 l of aqueous
effective volume) in the history of Earth. The limited space–time available to the
biosphere means that only a small part of ‘‘sequence space’’ could have been
explored since the Earth was formed.
Last, over much of the Earth’s history, and over the past 500 million years in

particular, innovation in protein function and behavior has most frequently been
achieved by recruiting an existing protein and changing its behavior by point
mutation, insertion and deletion, and (occasionally) contextual rearrangement,
rather than by de novo creation of new polypeptide chains. This effectively limits the
number of protein module families in the terrean biosphere, just as the Periodic
Table limits the number of elements in the terrean biosphere.
The number of nuclear families, operationally defined, is larger than the number

of families of proteins (Table 2), operationally defined as those where significant
homology can be detected by sequence analysis alone. The number of families is, in
turn, larger than the number of superfamilies, defined to include proteins that share
common ancestry, but where sequence similarity alone is insufficient to make a
convincing case for homology. Here, arguments for/against distant homology are
generally based on analogy between the folded structures of proteins, although other
analogies are conceivable. The number of recognizable superfamilies is presumably

Table 2

Definitions of family types

Nuclear family: Collection of proteins that generates a reliable multiple sequence alignment using

available tools

Sequence family: Collection of proteins where the scores of all interfamily sequence pairwise

comparisons is greater than a cut-off chosen to be a significant indicator of

homology

Extended family: Collection of proteins where all interfamily sequence pairs are connected by a

path of pairwise comparisons that score sufficiently to be significantly

homologous

Superfamily: Collection of homologous proteins where non-sequence based attributes (e.g.,

nature of the fold) are needed to establish homology

Independent

innovations:

Collection of proteins where all members are descendants of a common ancestor,

which represents an innovation independent of the innovation of all others.
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larger than the number of events in the history of the Earth where a gene encoding a
polypeptide sequence arose de novo. For other early discussions counting possible
numbers of families, superfamilies, and independently innovated proteins, the work
by Dorit et al. (1990), Chothia (1992), and Gonnet et al. (1992) serves as a starting
point.
Given the limited number of protein families in the terrean biosphere, and the fact

that we will repeatedly analyze the evolutionary features of these families of proteins
as we dissect function in the global proteome, it made sense some time ago to identify
all of the nuclear families encoded by the protein sequence database, to pre-compute
evolutionary models for each of these families, and to store them in a ‘‘naturally
organized database’’ (naturally organized database).
The idea of a naturally organized database of protein families is not new. In its

‘‘first generation’’ form, such a database was introduced by Dayhoff in her famous
Atlas of Protein Sequence (Dayhoff et al., 1978). This Atlas collected proteins by
families, and presented these with evolutionary trees and multiple sequence
alignments. Other implementations of this data structure have emerged since,
exploiting more advanced computer platforms and web access. They include the
Hovergen (Duret et al., 1994), Pfam (Bateman et al., 2000), DOMO (Gracy and
Argos, 1998), SCOP (Lo Conte et al., 2000), Prodom (Corpet et al., 2000) and
TIGRfam (http://www.tigr.org/TIGRFAMs/) databases. These databases are not
distinct in concept from the original Dayhoff concept. Indeed, some of them are
worse than the original paper-bound Dayhoff naturally organized database, in that
they do not offer precomputed evolutionary trees to the user. All of them, however,
are accessible by computer.
The MasterCatalog advances the concept of a natural organization in several

ways that enhance the value of a naturally organized database for biological and
biomedical researchers. First, the MasterCatalog contains all of the elements
expected within a first generation naturally organized database. For all of nuclear
families of modules derived from GenBank, the MasterCatalog contains a pre-
computed collection of evolutionary models that each contains:

(a) A collection of homologous protein sequences, obtained from the most recently
indexed version of GenBank.

(b) Top line annotation for each of the family members, together with database ID
numbers (such as gi numbers) that give the user the option of accessing the full
record from GenBank.

(c) An evolutionary tree of reasonable quality, calculated by an advanced distance
matrix where the distances between sequences is calculated with a variance. The
tree shows the family relationship between the protein sequences. Each leaf is
labelled with the species from which the corresponding sequence is derived.

(d) A multiple sequence alignment, again of reasonable quality, which shows the
evolutionary relationship between individual amino acids in the sequences of the
proteins in the nuclear family.

(e) Bridges, which identify other families in the database that might be distant
homologs for each nuclear family.
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Next, the MasterCatalog uses the nuclear family as the organizational feature.
Other family databases have attempted to capture within a single family as many
distant homologs as possible. Thus, the sequences collected within the extended
family do not lend themselves easily to the construction of a reliable multiple
sequence alignment. Indeed, some of the databases identify only ‘‘motifs’’, short
segments of protein sequence that are extremely conserved, as their distinctive
features. As we illustrate below, high quality multiple sequence alignments are keys
to the functional interpretation of sequences within a protein family.
Further, in constructing the MasterCatalog, separate evolutionary models are

built for independently evolving units of protein sequence. The polypeptide chain is
not necessarily the unit of sequence evolution. For example, the src homology 1
(SH1), src homology 2 (SH2), and src homology 3 (SH3) domains are homologous
among themselves, but are often moved, cut, added, swapped, or rearranged with
each other, within a single genome, to give different polypeptide chains. Any attempt
to construct a history of these chains without recognizing their composite
evolutionary nature will fail. Evolutionary models must be constructed for each of
these module families. The MasterCatalog does this.
Also, during the building of the MasterCatalog, ancestral sequences of genes

and encoded proteins are reconstructed at nodes throughout the tree. The ancestral
sequences are represented at each site in the protein sequence by a vector in 20
dimensions, where the components of the vector sum to unity, and at each site in the
DNA sequence by a vector in four dimensions, where the components of the vector
again sum to unity. Details of amino acid replacement throughout the tree are
captured within the MasterCatalog, where they stand available for use by the
biomedical researcher.

Second Generation Naturally Organized Databases

The number of innovations built within the MasterCatalog is sufficient as to
earn it the designation as a ‘‘second generation’’ naturally organized database. A
particularly inventive feature of the MasterCatalog is its use of explicitly
reconstructed ancestral states throughout the tree. These add a dimension of
interpretive value to an evolutionary model that is not captured by first generation
databases. With reconstructed ancestral sequences come statements, in probabilistic
form, about every event that occurred along every branch of every tree. OurDarwin

server generates an report that provides the user with a list of the nucleotide
substitutions and amino acid replacements that have occurred along each branch.
Starting with ancestral sequences and information about events, each branch in an

evolutionary tree can be characterized. The first feature of a branch is simply its
length. Metrics for length include the number of mutations in the DNA sequence
that occurred along the branch, the number of silent mutations that occurred along
the branch, the number of non-silent mutations that occurred along the branch, the
number of silent transitions that occur along the branch, the PAM length of the
branch, or the number of amino acid replacements that occurred along the branch.
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Other features of the branch can involve ratios of these. For example, the ratio of
non-synonymous to synonymous substitutions can be calculated for each branch.
The MasterCatalog exploits a heuristic used by Pamilo and Bianchi (1993) for
performing this calculation. The output is a Ka/Ks ratio for every branch in the tree.
The significance of this ratio is discussed below.
The features of the tree overall can be drawn from these reconstructed ancestral

sequences. We can ask, for example, what the average Ka/Ks is per branch across the
tree. We can weight this average by branch length. We can ask what statistical model
best represents the features of the evolutionary model that describes the tree as a
whole. We can identify individual amino acids that are replaced in a branch with a
high Ka/Ks ratio. The value of these metrics in interpretive proteomics will be
discussed below.
More importantly, a second generation database proves to be an excellent starting

point to identify points in the protein and in the history of its family where divergent
behavior does not follow simple stochastic models. These are, of course, the focus of
this lecture. Before we explore these, however, we need to apply another novel
enhancement of the evolutionary model, one involving dating.

Enhanced second generation naturally organized databases

Adding Dates

A key strategy in the analysis of genomic and proteomic sequence database
involves temporal correlation. Following this strategy, the scientist seeks events in the
history of the biosphere that occurred near the same time. When a correlation is
observed, it suggests (as a hypothesis) a functionally significant relationship between
the correlated events. Many of these events are recorded in the geological and
paleontological record.
Temporal correlation is a staple of interpretive paleontology. Ph.D. dissertations

are written in paleontology analyzing hypotheses that imply causal relationships
between historical events based on their near simultaneity (with the scale in millions
of years) of events recorded in the paleontological record.
With second generation naturally organized databases such as the MasterCata-

log, it becomes possible to also ask about dates of events captured in the molecular
record. To make a correlation between the geological and paleontological records on
one hand, and the molecular record on the other, however, we need a tool to date
events in the molecular record.
Each of these records has different tools for performing dating. The tools have

different accuracies. For example, the dates of crystallization within igneous rocks
are determined by examining the amounts of radioisotopes and their decay products
within the rocks. Radioactive isotopes are useful for dating events in the geological
record because of the first order nature of nuclear decay, and the remarkable extent
to which the associated rate constants are independent of environmental factors. Its
first order nature means that the decay can be modelled using a simple exponential
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rate law, with the fraction of initial atoms remaining f after time t defined by the
expression f=1�exp(-kt). Here, k is the rate constant for the decay, which gives the
half-life t=ln 2/k. The independence of k of environmental factors means that
one need know nothing about the history surrounding the sample to calculate a date
from this process. Simply by measuring the amounts of decay products from two
isotopes of uranium in a zircon crystal, for example, precision to better than a
million years is nearly routine when dating an igneous rock 500 million years old
(Bowring et al., 1993).
The paleontological record is dated by the association of specific fossils with

specific radiochemically dated rocks. Unfortunately, fossils are found in sedimentary
rocks. Crystallization of a rock from molten rock is needed to set the radiochemical
clock, making it radiochemical dating possible only for igneous rocks. In some cases,
volcanic strata or igneous rocks are closely associated with sedimentary rocks,
enabling the transfer of a date from one to another. More frequently, dates of
igneous rocks constrain the dates of fossils, without establishing their age precisely.
Correlating igneous rocks with sedimentary rocks, and correlating sedimentary
strata with the fossils that they contain, is an ongoing exercise in geobiology.
No known chemical process has rate properties that are comparable to those

displayed by radioactive decay. Many chemical processes display first order (or
pseudo-first order) kinetics, of course. But the rate constants for nearly all of these
are influenced dramatically by environmental factors, including temperature, salt
concentration, and pH (for example). How unsuitable chemical processes are as a
metric for age is well illustrated by examples where dating tools based on chemical
reactions were sought. Amino acid racemization is perhaps the most widely used of
these. But the rates of amino acid racemization vary dramatically depending on
conditions, making this a ‘‘second choice’’ dating tool, at best.
Given this, it may appear hopeless to try to identify a chemical process in living

systems that has sufficient first order character to be useful to date biological events,
especially one reflected in DNA or protein sequences (Fitch, 1976). We do not know
the microscopic chemical processes that are responsible for natural mutations in
natural populations. Indeed, it is conceivable that many microscopic chemical
processes contribute, including deamination, oxidative damage, polymerase error,
and failure of repair. Further, natural selection can play a major role in determining
what mutations are fixed in a population. When DNA mutations result in the
replacement of an amino acid in an encoded protein (a non-synonymous mutation),
the behavior of the protein can change. Protein behavior can be intimately connected
to function and natural selection. Therefore, encoding DNA sequences are not
expected to diverge with a time-invariant rate constant whenever the demands of
selective pressure are changing, even if the microscopic chemical processes that
create a pool of mutations occurs with a time-invariant rate constant (Ayala, 1999).
Nevertheless, one can hope that some parts of a DNA sequence will diverge in a

process that might display first order kinetics approximately. Synonymous sites in a
gene, sites where nucleotide substitution does not change the encoded amino acid,
are frequently examined for this purpose (Li et al., 1985). Because these cannot alter
the behavior of a protein, synonymous substitutions are likely to be free of selective
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pressure than substitutions at non-silent sites. Thus, these are candidates for
mutations that diverge with (pseudo) first order kinetics.
Recent studies that examine synonymous substitutions do not, however, use an

approach-to-equilibrium kinetic processes to model these. Rather, most approaches
attempt to enumerate substitutions at synonymous sites by comparing two extant
sequences, counting the silent differences, and using a correction to estimate the
number of times multiple substitutions have occurred at the synonymous site (Tiffin
and Hahn, 2002). From this is extracted a number for the synonymous substitutions
per site. Further, these metrics attempt to count all synonymous mutations that
occur at each site, including those within two-fold redundant codon systems, within
four-fold redundant coding systems, and within codons that have also suffered non-
synonymous mutations well. Most treat transitions (which replace pyrimidines by
pyrimidines, or purines by purines) and transversions (where pyrimidines and
purines are interconverted) together, even though these are known to occur at
different rates (Gojobori et al, 1982).
Some time ago, we introduced into the patent literature a new tool to date

sequences based on the approach-to-equilibrium formalism taken from chemical
kinetics. While we recognize that no DNA mutation process will ever be described as
a first-order process to high accuracy, the value of these approach-to-equilibrium
models in sorting out networks and pathways in whole genome analysis has proven
to be so valuable in ad hoc cases that we believe it is timely to report details of the
approach-to-equilibrium model in correct form.
It is well known that a two state system interconverting species A and G in the

kinetic scheme:

A #
kA-G

kG-A

G ð1Þ

approaches equilibrium via an exponential process, where the observed rate constant
kobs is equal to the forward rate constant for the conversion of A to G, plus the
reverse rate constant for the conversion of G to A, that is, kobs=kA-G+kG-A.
Further, at equilibrium, the ratio of G to A is equal to the ratio of the forward and
reverse rate constants, that is, Geq/Aeq=(kA-G)/(kG-A), where Geq and Aeq are the
respective concentrations of G and A at equilibrium. In the general case, the
concentration of A as a function of time is

AðtÞ
A0

¼ fGeq
exp� ðkA-G þ kG-AÞt þ fAeq

; ð2Þ

where fGeq
and fAeq

are the fractions of G and A at equilibrium (that is Geq=ðGeq þ
AeqÞ and Aeq=ðGeqþAeqÞ). These two fractions, expressed in terms of the microscopic
rate constants, are kA-G=ðkA-G þ kG-AÞ and kG-A=ðkA-G þ kG-AÞ: The analo-
gous expression can be written for the concentration of G as a function of time:

GðtÞ
G0

¼ fAeq
exp� ðkA-G þ kG-AÞt þ fGeq

: ð3Þ

The two fractions of G and A at time t always sum to unity.
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Consider now the case where A and G are nucleotides at a site constrained to
accept only purines, A or G. The rate constants kA-G and kG-A now correspond
to pseudo-first order rate constants for two transition processes, the mutation of A to
give G, and the mutation of G to give A. Again, the kobsR (R for purines) is equal
to kA-G+kG-A. The fraction of sites occupied by A and G reflect the A/G bias at
such sites at equilibrium (which we assume holds throughout).
Let us now consider two identical sequences that are given the opportunity to

diverge. We assume that the initial proportion of A and G at these sites is equal to the
bias, that is, that the fractions of A and G represent the fractions expected at
equilibrium. We also assume that each site suffers mutation independent of other
sites, and that the forward and reverse transition rate constants are the same for all
sites. How will the identity at purine-constrained sites diverge?
Let us consider separately the sites that are occupied by A at t=0 and the sites that

are occupied by G at t=0. For those that are occupied by A, the sites that are
considered to be ‘‘conserved’’ at time t are those that retain A at time t. As a fraction
of the total sites originally A, Eq. (2) can be deconvoluted as follows:

conserved sites

arising from A
½fGeq

expð�kobsRtÞ þ fAeq
� fAeq

; ð4aÞ

conserved sites

arising from G
½fAeq

expð�kobsRtÞ þ fGeq
� fGeq

: ð4bÞ

The fraction of all sites conserved as a function of time is the sum of these two:

f2 ¼ fAeq
fGeq expð�kobsRtÞ þ fAeq

fAeq
þ fGeq

fAeq expð�kobsRtÞ þ fGeq
fGeq

¼ 2fAeq
fGeq

expð�kobsRtÞ þ f 2Aeq
þ f 2Geq

¼ PRexpð�kobsRtÞ þ ER; ð5Þ

where PR is the pre-exponential term ð¼ 2ff 2Aeq
þ f 2Geq

gÞ and ER is the f2 reached at
equilibrium, and is equal to f 2Aeq

þ f 2Geq
:

Thus, f2 as a function of time follows a first order exponential decay from unity to
an end point defined by the expression ðf 2Aeq

þ f 2Geq
Þ: These two terms, in turn, are

defined by fkG-A=ðkA-G þ kG-AÞg
2 and fkA-G=ðkA-G þ kG-AÞg

2: If A and G
appear with equal frequency, then the end point f2=0.5. If, however, A and G appear
with a relative frequency of 0.6 and 0.4, then the end point is 0.52.
If the rate constants are assumed to be time-invariant, we can treat f2 as a

molecular clock. It is a very special one, in that it involves only two specific rate
constants from the 12 that are possible with the four letters in the genetic alphabet.
Further, it considers only those sites where the amino acid has not diverged,
constraining the site to accept only a transition. As the rate constants for transitions
and transversions are known to be different, this particular clock should (from first
principles) generate better dates than one that aggregates the 12 different processes.
To implement this clock, we need only to identify sites in natural DNA sequences

that are constrained to mutate between A and G only. Codons for three amino acids
(Glu, Gln, and Lys, or E, Q, and K in the one letter code) are so constrained if the
amino acids are not replaced. In practice, we can examine a pair of aligned protein
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sequences for positions where Glu, Gln, and Lys are conserved between the two.
Making only the approximation that homoplasy at these sites has not occurred, we
can use the synonymous (third position) sites in these codons as candidate sites that
fit the purine-constrained criterion.
An analogous kinetic expression can be written for pyrimidine–pyrimidine

transitions. The third positions of six amino acids (Cys, Asp, Phe, His, Asn, and
Tyr, or C, D, F, H, N, and Y in the one letter code) are constrained to have only T or
C, if they are not replaced in the protein coding sequence. Again, inspection of a pair
of aligned protein sequences for positions where these amino acids are conserved
identifies synonymous sites as candidates that fit a pyrimidine-constrained kinetic
behavior.
The TREX (transition redundant exchange) clock does not require that

silent transitions be absolutely neutral. The equilibrium fractions of nucleotides
at silent sites need not be equal (codon bias), and this corrects for any selective
pressure that causes a time-invariant bias at the silent sites. It does require, however,
that this selection pressure be time-invariant, that is, that it not change in the time
separating the sequences whose divergence is being dated. As we note below, a
comprehensive analysis of a genome permits one to assess the extent to which codon
bias and transition rate constants have changed in the historical past of a lineage.
Absence of time-invariant bias means something too, for example, that the
evolutionary processes that lead to natural mutation are changing or that the
properties of tRNA molecules in the system are changing. One of the key purposes of
whole genome analyses (see below) is to model these processes and properties over
time.
The precisions of TREX distances depend on the number of characters used to

derive them. All dates contain uncertainty. Uncertainties in geological dates based
on exponential radiochemical decay are small, often less than 0.1% for dual isotope
chronology on well-preserved igneous rocks. Paleontological dates of divergence
(from fossils) have larger uncertainties, primarily because of the incomplete fossil
record. Fossils near branch points in a phylogenetic tree are rarely found, and those
that are need not be associated with isotopically datable igneous formations.
Work with yeast, fly, and vertebrates suggests that the main sources of variance in

dating using standard silent substitution metrics (Li et al., 1985; Pamilo and Bianchi,
1993, Lynch and Conery, 2000) are the approximations made by the underlying
model. These create imprecision much greater than the uncertainties due to
fluctuations, and the uncertainty in paleontological dates. The approximations
embedded into the TREX tool, however, are not as severe (although some still exist,
of course). Further, TREX distances can be calculated from reconstructed ancestral
sequences, allowing a correction for generation times of ancestral organisms (see
below). Therefore, the variance in N2ED dates arises primarily from fluctuation (a
typical TREX value is calculated from 100 characters); fluctuation accounts for
>90% of the variance observed in a data set from mammals (Caraco, 2002). We
need not invoke differential rates of silent substitutions in different genes (‘‘hot
spots’’), different codon biases in different genes, or other non-first order processes
to account for the variance. Further, the error in a TREX date is less than the typical
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errors in dating branch points from the fossil record. For the purpose of planetary
biology and genome annotation, this is as good a precision as is useful.
The TREX tool can be used to add dates to nodes in the tree captured within a

second generation naturally organized database back in time to a point where the
two-fold redundant sites become equilibrated. The greater the number of sequences
descendent from a particular ancestor present in the database, the more precisely the
sequences of the ancestral proteins can be defined. Because node–node distances are
shorter than leaf–leaf distances in a tree, the process of reconstruction can permit
TREX dates farther back in time with greater precision than would be possible for
leaf–leaf dating alone.
Perhaps the most direct use of the TREX tool, however, is to distinguish orthologs

from paralogs. Orthologs are two homologs found in different taxa where the most
recent common ancestor of the two proteins was found in the most recent common
ancestor of the two taxa. Orthologous proteins are generated by gene duplication, of
a sorts. But the gene duplication generating orthologs is the same as the duplication
that is associated with speciation. The fate of one duplicate is associated with the fate
of the organism(s) that eventually founded taxon 1; the fate of the other duplicate is
associated with the fate of the organism(s) that eventually founded taxon 2.
In contrast, paralogs are homologs found in a single genome. They arose by a true

gene duplication, meaning a genetic event that creates two loci on two different
positions of a chromosome, or possibly on two different chromosomes.
The ‘‘ortholog–paralog problem’’ arises from the fact that a homolog in taxon A

need not have diverged from its counterpart in taxon B at the same time as the two
taxa diverged. Gene duplication prior to the divergence of the two taxa, and possible
gene loss (or incomplete genome sequencing), can generate paralogs whose true
evolutionary relationship is not recognized by analysis of a tree alone. Fig. 7
illustrates how the perception regarding the point(s) on an evolutionary tree that
represent the last common ancestor can be altered by discovering new sequences.

Adding Structural Biology

Proteins are organic molecules. Therefore, the three concepts of structure
(constitution, configuration, and conformation) that apply to all organic molecules
apply to proteins as well. Many of the interpretive proteomics tools that we use
involve manipulation of those strings as strings. Therefore, interpretive proteomics
tools that incorporate conformational analysis add a new ‘‘dimension’’ to the
analysis.
In interpreting the functional significance of sequence change, a particularly

powerful tool involves correlations that identify specific amino acids that are being
replaced during an episode of sequence evolution, and view those specific amino
acids in relation to the three-dimensional structure of the protein. For example, if a
change occurs in the active site of an enzyme, this fact alone suggests functional
hypotheses that are different than if the change occurs distant from the active site
(Benner and Gerloff, 1991).
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The most direct way to associate a conformation with a protein family is to access
an experimentally determined conformation for one of the proteins in the family.
This is done either by X-ray crystallography or nuclear magnetic resonance
spectrometry. The MasterCatalog records the experimental structure for every
protein whose conformation has been determined experimentally.
It is also possible to predict secondary structure for proteins from a set of

sequences of homologous proteins undergoing divergent evolution under functional
constraint. The tools implemented on the Darwin server for predicting secondary

Fig. 7. The point(s) on an evolutionary tree of a protein family that represent the last common ancestor

can be altered by discovering new sequences. Note that in the bottom trees, two points represent the most

recent common ancestor of rat and human. This is because the protein family suffered a duplication prior

to the divergence of rat and human, meaning that the last common ancestor of rat and human had two

members of this protein family. TREX dates permit us to distinguish between these without having to find

the missing sequences. Thus, if the diamond in the upper left diagram is associated with a TREX date that

reflects the known time of divergence of human and rat, then the rat 1 and human sequences are true

orthologs. In contrast, if the diamond in the upper left diagram is associated with a TREX date that is

larger than the known time of divergence of human and rat, then the rat 1 and human sequences must be

paralogs, and the true orthologs need to be sought (if the genome is not complete) or can be presumed to

have been lost (if they are not there in the completed genomes).
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structure are based on a general, site-by-site analysis of mutability. These tools have
been reviewed elsewhere (Benner et al., 1997). The MasterCatalog contains a
predicted secondary structure for each protein family.
Information about the conformation of a protein can be used to rectify the

evolutionary model for the protein family. In particular, knowledge of an
experimental structure can help in the placement of gaps within a multiple sequence
alignment, in the alignment of key residues, and in selecting the preferred tree.
The last is especially useful. When protein sequences divergently evolve under

functional constraints, some individual amino acid replacements that reverse the
charge (lysine to aspartate, for example) may be compensated by a replacement at a
second position that reverses the charge in the opposite direction (glutamate to
arginine, for example). When these side chains are near in space (proximal), such
double replacements might be driven by natural selection, if either individually is
selectively disadvantageous, but both together restore fully the ability of the protein
to contribute to fitness (are together ‘‘neutral’’).
This type of behavior is called compensatory substitution. It represents a higher

order behavior of protein sequences that is not captured by the Standard Model.
Some time ago, we noted that a modest signal could be obtained by searching for
compensatory changes on branches of trees that lie between two nodes. The signal is
most evident when a crystal structure is available, as it can be determined whether
the amino acids that are suffering complementary replacement at the same time are
actually close in space.
The strength of the compensatory covariation signal undoubtedly depends on the

degree to which the trees and the reconstructed ancestral sequences accurately reflect
the history of the family. If the branching of the tree or the reconstructed sequences
themselves are not correct, a pair of charge compensatory replacements that are
coincident, in fact, may not be assigned to the same branch of a tree. In this case, the
signal from this pair will be lost.
Getting the branching correct in an evolutionary tree is a difficult problem. Part of

the difficulty arises because of the trade-off between the accuracy of the tree and the
cost of generating it. For example, the ClustalW (Thompson et al., 1994) and Fitch
parsimony tools are relatively inexpensive methods for reconstructing trees and
ancestral sequences. ClustalW uses a neighbor joining tool based on estimates of the
distances between sequence pairs derived from the Kimura empirical formula
(Kimura, 1983). Ancestral sequences reconstructed by parsimony are well known to
be sensitive to incorrect branching topology. This may be the principal error
associated with the choice of this inexpensive reconstruction tool.
Even more expensive tools do not guarantee a correct tree, of course. In practice,

the approximations made in the model may create systematic error larger than
fluctuation error. To date, the only way to benchmark a tree requires knowledge of
the evolutionary history of the sequences in question (Hillis et al., 1994) or a
reconstruction of a simulated evolutionary process (Takahashi and Nei, 2000). The
first is difficult to get for sequences emerging from natural history. The second
requires a mathematical model for evolution, which is often the same one that is used
to construct the tree in the first place.
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Here, the compensatory covariation signal, extracted from reconstructed ancestral
sequences, may provide a metric for the quality of a tree based on organic chemistry,
independent of any mathematical model for evolution. Hypothetically, the best tree
should be the tree that places compensatory replacements truly driven by natural
selection on the same branch. This requires the construction of a tree that reflects the
actual evolutionary history. This, in turn, implies that the tree has the most
compensatory covariation is the tree that is most likely to reflect the actual history.

Fig. 8. A schematic illustration of the use of compensatory covariation to select a preferred tree from two

equally parsimonious trees. The two tree topologies relating the four sequences (ALKD, MVKD, ALER,

and MVER) each require six changes. The changes are marked on individual branches, with fractional

changes arising from the ambiguity in the ancestral sequences. The ancestral sequences are placed at the

nodes in the tree, with ambiguous sites (by parsimony) noted by placing the two possible residues above

and below a horizontal line. For each topology, identical trees holding all four possible ancestral sequences

are shown. Each, by parsimony, has equal likelihood (0.25 for each). In Topology I, the ancestral

sequences are ambiguous at the first two positions. In Topology II, these are ambiguous at the last two

positions. Both trees require the same amount of homoplasy (convergence). Classical parsimony analysis is

indifferent with respect to the two topologies. In Topology I, however, the likelihood that a charge reversal

is compensated is unity. In Topology II, the likelihood that a charge altering replacement is compensated

is only 0.5. Thus, Topology I is preferred if compensatory covariation is maximized. This criterion is

independent of mathematical formalisms used to construct the tree. Further, the metric weights changes at

position i depending on events at position j, making this metric for evaluating a tree fundamentally

different from any metric based on a first order stochastic analysis of protein sequences.
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To illustrate this application, consider four hypothetical proteins, just 4 amino
acids in length, having the sequences ALKD, MVKD, ALER, and MVER. Exactly
two topologies exist for unrooted trees that relate these four sequences (Fig. 8). Both
reconstructions have two ambiguous sites in both ancestors. In Topology I, the first
two positions are ambiguous; in Topology II, the last two positions are ambiguous.
Both trees require four ‘‘homoplastic’’ events (independent mutations that cause
sequence convergence). Both trees require exactly six changes. Classical parsimony
therefore ranks these two topologies as equally likely.

Fig. 8 (continued).
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The two topologies are different, however, with respect to the extent to which
charge changes are compensated. In Topology I, a charge altering replacement is
100% likely to be compensated. In Topology II, however, a charge altering
replacement is only 50% likely to be compensated. This is illustrated in Fig. 8 by
writing out four trees, each equally likely, that carry reconstructions that the
ambiguities require. If we postulate that compensatory covariation is maximized,
then Topology I is preferred over Topology II.
Conversely, an analogous logic can be used to assign preferred ancestral states

involving charged residues. For the tree on the left, the ancestral states involving
charged residues are fixed. For the tree on the right, the preferred ancestral sequences
are in reconstructions IIa and IIb.
This metric can be applied even if no crystal structure is available for a protein

family. If, however, a crystal structure is available, then (as a practical matter) one
would maximize the number of charge compensatory changes that are physically
near in space when identifying the preferred tree.
This approach is the first to identify the correct tree by seeking a physical organic

property of the molecular evolution. Again, a statistician will find no numerical
metric to assess the approach’s reliability. This is chemical science, not mathematics.
Nevertheless, the tool is useful, if only because it generates a preference for one tree
as a hypothesis.

Identifying the Superfamily

The assembly of a nuclear family stops once the sequences being added fail to meet
a cut-off that is selected to ensure high quality MSAs. The cut-off is, to a degree,
arbitrary. Therefore, more distant homologs are retained within the MasterCata-

log in a list of ‘‘bridges,’’ connections to other nuclear families that reflect
indisputable inter-family homology, but where the extent of sequence divergence is
too great to permit a single nuclear family to be constructed from the two. As noted
above, families connected by bridges can be used to root the individual nuclear
families. Again, over time, the MasterCatalog will evolve to incorporate these
roots, and the table of bridges is a resource.
Ultimately, we wish to identify superfamilies, collections of protein sequences that

may share common ancestry even though the similarities in the sequences of their
most distant members is insufficient to support (with an acceptable level of
significance) the conclusion of homology. Today, the only reasonably validated to
tool for inferring homology at this distance is by noting analogies in the
conformation, or fold, of the families. Analogous folds between two protein families
may help align sequence motifs, sequence strings that are too short to support
significantly any conclusions of homology, but might be regarded as being
suggestive. Alternative tools, including mechanistic analogy (when enzymes are
involved) are too susceptible to convergence to be reliable, although they can
support a conclusion of homology based on weak sequence similarity and analogous
conformation.
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Both predicted and experimental structures have been shown to be useful to
identify superfamilies. Especially valuable are tools introduced by Benner and
Gerloff (1991), which are able to both confirm and deny distant homology. Using
these tools, for example, protein kinase was correctly predicted not to belong to the
superfamily that also contains adenylate kinase, even though motif analysis
suggested that it did (Benner and Gerloff, 1991).
Table 3 summarizes the steps used to assemble a superfamily. Superfamily

connections aid interpretive proteomics most significantly when no cultural
annotation, defined as the linguistic construct that indicates function, is available
for any members of the nuclear family, or for any members of the extended
family linked by bridges. Failing any experimental evidence for function within the
nuclear and extended families, the experimentalist is delighted if any broader
homology indicators identify possible homologs that have an assigned function. This
being said, it is important to note that function can change dramatically within a
nuclear family, and it certainly changed within extended families. Therefore,
annotation transfer (see below) between members of a superfamily may be only
conjectural.

Modifying the Family as Delivered

The MasterCatalog saves time. Without the MasterCatalog, every time an
evolutionary analysis is desired, we are faced with the grim tasks of submitting
searches to a BLAST server, downloading the sequences that are identified, and
building an evolutionary model for the sequences that have been identified. We must
make decisions about what proteins to include and exclude from the family, the
significance of the scores, and the suitability of trees and multiple sequence
alignments.
All of these are pre-computed in theMasterCatalog, for all of the families in the

global proteome currently identified. Given the MasterCatalog, therefore, we can
start the day possessing a naturally organized database as a resource, having in hand
all of the elements of a first generation naturally organized database, and many of a
second generation naturally organized database. The models within the Master-

Catalog are sufficiently advanced that we can move immediately to the next

Table 3

Steps used to identify distant homologs

Add obvious bridges to the family; these are bridges that meet test of statistical significance

Refine the placement and sequence of the founder based on a root

Use the founder sequence to confirm/deny speculative bridges based on sub-statistical sequence similarity

Use experimental secondary structures to confirm/deny speculative bridges based on sub-statistical

sequence similarity

Refine the secondary structure prediction

Use the secondary structure prediction to confirm/deny speculative bridges based on sub-statistical

sequence similarity
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phase: devising interpretive strategies and tools assuming that the task is already
complete. In this regard, the 100,000 families within the MasterCatalog, collected
by family, are a deliverable. With the MasterCatalog, we can immediately begin
thinking about biology.
This does not mean that one must accept the evolutionary model delivered

by the MasterCatalog, as it is delivered, of course . Before we begin an analysis
of a family of proteins starting with a deliverable provided by the MasterCatalog,
we may wish to modify its contents. Some possible modifications are listed in
Table 4.
Most commonly, the user may possess sequences that is not in the public domain.

In this case, the sequence data may be added to the family as it is delivered by the
MasterCatalog.
Alternatively, we may wish to remove sequences from the family as it is delivered

by the MasterCatalog. GenBank has a bias towards redundancy; virtually every
sequence variant that is submitted to GenBank ends up in the database. Often, exact
duplicates or near duplicates contain interesting information, and should be
retained. But for other purposes, a family with too many sequences may be difficult
to visualize, or may slow subsequent computation. In these cases, the delivered
family may be culled, to remove exact or near duplicates, or to remove sequences
from exceptionally bushy branches.
In either case, the original tree and MSA may be recomputed. The Darwin server

supports recomputation of trees and MSA when presented with an SGML file that
contains the desired set of sequences. In practice, all interpretive proteomics efforts
begins by downloading the MasterCatalog family as a deliverable, adding or
removing sequences as appropriate, generating an SGML file from the final set of
sequences, and submitting the final set to the Darwin server (or to any other utility
that the user desires) to recompute the tree and the MSA.
The result is the ‘‘rectified’’ family that is the starting point for a functional

analysis. We can now make some general observations about the family. First, we
can note the overall PAM distance of the family, a measure of the number of
point accepted mutations per 100 amino acids between the most distant
sequences, captured within the family. A divergent family is better than a family
composed from only highly similar sequences. The former contains more
information, while the latter resembles (in terms of information) many copies of
the same newspaper, therefore not containing much more information than the
first copy.

Table 4

Modifying the contents of a nuclear family

Adding sequences, perhaps proprietary sequences

Removing obvious duplication

Removing sequences without DNA (for analyses that require DNA)

Removing ‘‘defective sequences’’ (fragments, dubious intron assignments)

Superfluous sequences as a problem to presentation
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Further Rectification of the Evolutionary Model for the Family

Rectification is a complex concept. Generally, an evolutionary model is rectified
whenever the user is dissatisfied with some feature of the evolutionary model for the
family of proteins as delivered by the naturally organized database.
For example, different practitioners are advocates of different tools to construct

trees and MSAs. Some prefer parsimony methods, such as those implemented by
PAUP (Swofford, 1998). Others prefer maximum likelihood methods as implemen-
ted by PHYLIP (http://evolution.genetics.washington.edu/phylip.html). Preferences
vary concerning scoring matrices. Table 5 contains some alternative approaches that
can be used to construct a tree and/or a MSA from a set of protein sequences derived
from the MasterCatalog. No effort has been made to be exhaustive.
We are neither advocates nor opponents of any particular tool. Each represents a

particular mathematical formalism representing divergent evolution, with its own set
of assumptions. Extensive discussion can be had as to which is ‘‘better’’. As we
outlined above, we are less concerned with how accurately different tools reflect
reality than we are with how useful they are, especially to biological and biomedical
researchers. This determination must be made through the actual use of the tools,
not by applying statistical metrics.
A plurality of models becomes valuable for this reason. Different mathematical

formalisms of divergent evolution can give somewhat different trees and multiple
sequence alignments. It is conceivable that these differences will lead to differences in
interpretations made by an evolutionary analysis of these models. It is therefore
useful to ask how robust the interpretations are with respect to plausible variation in
the formalism used to construct the model. Indeed, it is useful to ask whether the
interpretation is robust even with respect to implausible variations in the formalism.
For this reason, it makes sense during a program of interpretive proteomic

analysis with a family to re-compute the tree and MSA using formalisms different
from those used to create the deliverables within the MasterCatalog. At the same
time, the user might consider recomputing the tree, MSA, and ancestral sequences
using the most expensive formalism that the budget will allow, and then determine
whether the interpretations are robust with respect to the resulting changes. We
ourselves frequently wish to adjust the placement of gaps within the MSA using
advanced gap placement heuristics (Benner et al., 1994), and to examine alternative

Table 5

Alternative approaches to constructing trees and multiple sequence alignments

Use a distance-based tree that does not incorporate variances (like the MasterCatalog tree does)

Use a tree based on DNA sequence analysis

Use a distance-based tool that incorporates a gamma model

Use paleontological information to constrain the tree

Use a silent codon metric, such as a TREX distance, to build a part of the tree

Use different metrics in different parts of the trees, such as (for example) TREXs for closely related

sequences, PAM for more distant parts, and gapping for still more distant parts of the trees.

Build trees with alternative sampling of the database (robustness to sample size)
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trees using our compensatory covariation tools, as discussed above (Fukami-
Kobayashi et al., 2002).
Another rectification process recognizes the possibility that the sequences

themselves might contain mistakes. In particular, genes that are found by hidden
Markov models (HMMs) misassign introns, starts, and stops within found genes,
with an unknown frequency. These yield incorrect gaps in a multiple sequence
alignment. Advanced gap placement tools help remove these mistakes as part of a
rectification process.
Again, over time, the pre-computed models for individual families within a

naturally organized database will be rectified to remove mistakes, enhanced by
statistical analysis, and refined through the introduction of non-sequence informa-
tion (including paleontological information). This, over time, these families come to
reflect the historical reality more accurately.
The vision is captured by the analogous development of the Periodic Table a

century ago. The characteristics of the chemical elements were obtained approxi-
mately for each element when it was discovered. Over time, the description of the
element was enhanced, however, and more precise values were obtained. Eventually,
for each element, the model converged to an endpoint.
We expect the same to occur for each family in the MasterCatalog. There is

only one true molecular history for any individual family of proteins. As more data
emerge, including sequence, paleontological, and geological, the parts of this history
that can be reconstructed will be reconstructed with increasing accuracy. The parts
that have been irretrievably lost will also become evident in the process. Over time,
the description of the evolutionary history of each module family will converge to a
stationary point.

Enhancing the Evolutionary Model for a Protein Family of Interest

Given a rectified evolutionary model, we are prepared to enhance the trees and
multiple sequence alignments of the nuclear families extracted from a second-
generation database. Enhancements can be pre-computed at any point in the
assembly of an evolutionary model, and are worth storing in a secondary database,
as they are used repeatedly throughout any interpretive proteomics efforts. Like the
basic model itself, the enhancements will improve as more sequences are collected.
Eventually, as they come to be accepted for individual families, the enhancements
will be incorporated within the primary database itself. Table 6 lists a set of the most
used enhancements.
The first enhancement assigns f2 values to nodes in the tree. Nodes having lower f2

values represent events that are more ancient than events represented by nodes with
higher f2 values. These can be used to place TREX lengths for each branch, as
discussed above.
The next enhancement places a root on the tree, where the root is the point on the

tree that represents the most ancient sequence. When a root cannot be assigned to a
specific point, it is useful to identify a region on the tree that contains the root.
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Two ways are available to place a root on the tree for a nuclear family,
given a naturally organized database. The first is to find an outgroup family. When
one exists for a family, it is recorded in the MasterCatalog as a bridge.
Conventional methods can be used to root a tree using a bridged family as an
outgroup.
The second approach exploits the TREX methods to find regions of the tree where

the root might lie. Here, the root is the node with the lowest f2 value, if the two-fold
redundant silent sites have not suffered so many mutations that their nucleotides
have equilibrated, and if the assumption of constant codon bias holds across the tree.
Alternatively, the root lies within the region of the tree where equilibration is
observed. Where equilibration has not occurred, the TREX values permit us to place
approximate dates for nodes on the tree.
By placing a root on the tree, one puts a direction to time for every branch that is

beneath it. This is useful when correlating the molecular record with the
paleontological and geological records, as noted below.
A further enhancement places insertions and deletion events (indels) on the

preferred tree. Placing indels on a tree is becomes increasingly easier as the
tree becomes more articulated. Obviously, the gain or loss of a chunk of
peptide sequence is a dramatic change in the structure of a protein, more
dramatic in most cases than a point mutation. The more precisely indel events can
be mapped to the tree, the more likely they are to be interpretable in terms of natural
history.
An enhanced, second generation, evolutionary model for a family of proteins

provides information far beyond the information contained in the ‘‘first generation’’
models collected in Dayhoff’s Atlas, or the Hovergen, Pfam, DOMO, COG, or
TIGRfam databases. As the coverage of the global proteome improves, we expect
these enhancements to stabilize, and eventually become incorporated within the
MasterCatalog families.

Functional inference from reconstructed evolutionary biology involving rectified

databases (firebird): single family analysis

While the first law of Structure Theory in Organic Chemistry holds that all
behaviors of a molecule are determined by its molecular structure, and while these
include biological behaviors, the complexity of interactions between the many

Table 6

Enhancing the evolutionary model for a nuclear family

Assigning TREX f2 values to nodes in the tree

Placing the root on the tree

Placing gaps on the tree

Reference Ka/Ks values for individual branches on the tree to the average Ka/Ks on the tree; then to sub-

branches
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molecules in a living cell makes direct inference of molecular behavior and molecular
function impossible, at least today, with current theory. Indeed, the complexity of
interaction between an organic molecule and the water molecules that dissolve it is
too great to permit any currently available theory to be useful, either predictively or
manipulatively.
These considerations encouraged many to believe in 1990 that the task of

predicting the conformation of proteins from a set of sequence data was not likely to
be solved. Indeed, number crunching approaches that attempted to directly model
the protein molecule, the energetics of interactions between its pieces, and the
structure of the surrounding solvent, had failed to provide convincing solutions to
the problem. They even had failed to show measurable progress towards solutions.
A decade ago, we offered an alternative approach to number crunching as a way

to extract information about the conformation of proteins, starting from a set of
homologous sequences diverging under functional constraints. This approach
avoided the problems associated with a frontal assault on the protein fold prediction
problem, and generated the first convincing tools to solve the problem. In a variety
of settings, including the project known as the ‘‘Critical Assessment of Structure
Prediction’’ (CASP) project, evolution-based tools have repeated provided accurate
structural models, as well as occasional statements about protein function based on
these (Gerloff et al., 1997). The approach is reviewed elsewhere (Benner et al., 1997),
including on these pages (Benner et al., 1998).
The same types of approaches that are used to predict the conformation of

proteins can be used to extract information about the function of a family of
proteins. Indeed, predicting the fold of a protein is often the key step when making
statements about functional behavior in proteins. As before, a set of homologous
proteins diverging under functional constraints is assembled, and a model is built
that makes explicit statements about the relationship between inferences about
function are extracted when homologous protein sequences are presented as family,
set within the context of an explicit evolutionary model, diverging under functional
constraints.
To students who might view what follows as intimidating, we offer this process

as a ‘‘game’’. The goal of the game is to draw as many inferences as possible
about a family of proteins, without concern as to how reliable these inferences
might be. The best inferences include as many interconnections as possible, with
as broad a scope as possible, and lead to as many experimentally testable hypo-
theses as possible. Any information from ‘‘common knowledge’’ can be used. The
winner of the game is the player who has generated the most testable hypotheses,
that bring together the most (previously viewed as disparate) facts about the
natural and biochemical worlds, and provides the most interesting framework for
future work.
We will not be concerned about the reliability of inferences as one plays the game.

This notion is, of course, alien to statisticians who often seek tests of reliability. The
notion is not alien, however, to the experimental biologists. Weak hypotheses can be
valuable if they suggest experiments that test them. Indeed, incorrect hypotheses can
be valuable if they are testable.
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What is ‘‘Function’’?

Examining sequence data for inferences about function is fundamentally different
from examining sequences for statements about conformation, or fold. The fold is a
statement about the molecule itself, part of the trinity of constitution, configuration,
and conformation that define structure of an organic molecule. It is expressed in
universal terms, coordinates of atoms in space, or the relative positions of amino
acid side chains.
Function, in contrast, is a linguistic construct. Those who ask ‘‘What is the

function of my protein?’’ expect (Benner and Gaucher, 2001) a sentence or two of
‘‘cultural annotation’’ written in the language of the biologist. The answer might
take, as an example, the form: ‘‘Your protein is a leptin, which regulates the feeding
behavior of mice. When the gene is mutated or deleted, the mouse becomes obese’’
(Zhang et al., 1994).
Such linguistic constructs are distinct from the underlying concept of fitness, of

course. In principle, the contribution to fitness made by any specific behavior of a
specific biomolecule is subject to operational measure. One must alter the structure
of the biomolecule in a way that alters that behavior (and no other behavior). One
must then introduce the altered biomolecule into a natural population living in a
natural environment. One then must measure how the altered biomolecule is
distributed in the population after an arbitrary number of generations.
As is often remarked in the literature, this experiment is difficult to do. Chemists,

who do the same sort of thing when trying to connect chemical structure to behavior,
fully appreciate the problem. There is no structural change in a molecule that affects
only one of its behaviors, even for an isolated molecule in a test tube. The chemist’s
joke is that the structural change changes the behavior that you know about, as well
as the behavior that you do not know about.
Despite this limit, over time, this approach in chemistry has generated a somewhat

coherent (if elaborate) view of the relationship between molecular structure and
molecular behavior. Doing so has required chemists to consciously not use the types
of statistical analyses that are part of the culture of population biology,
bioinformatics and molecular evolution. Instead, chemists favor a metalanguage
that abstracts features of molecular structure, a cultural annotation of a sorts. Much
can be learned from the development of chemical metalanguage that is applicable to
the tasks presented to the modern interpretive proteomicist.
To make functional annotation, contemporary bioinformatics generally attempts

to bridge chemical sequence to biological fitness using a doctrine of ‘‘functional
equivalency’’ in the linguistic descriptions of function (for example, see Eisenberg
et al., 2000). This doctrine writes a linguistic construct for a new protein sequence by
expropriating the linguistic construct from another sequence having a similar
chemical structure. A protein with unknown function is found in one genome. It is
inferred, from its sequence similarity, to be homologous to a different protein found
in a different organism. Homologous proteins are then assumed to have equivalent
functions. The functional language assigned to the protein with the known function
is then transferred to the new protein.
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Long before the genomics revolution began, many cases were known where
this doctrine failed (Benner and Ellington, 1988). Fig. 9 illustrates one example.
Here, four proteins from microbial metabolism, adenylosuccinate lyase, arginino-
succinate lyase, aspartase, and fumarase clearly group into homologous pairs
based on sequence similarity, and are part of an evolutionary superfamily that
includes all four proteins (Aimi et al.1990). One protein is involved in nucleic
acid biosynthesis, another is involved in amino acid biosynthesis, another is
involved in amino acid degradation, and the last is involved in central metabolism,

Fig. 9. Homologous enzymes catalyze four reactions: (a) in central metabolism (the citric acid cycle) (b) in

amino acid degradation, (c) in nucleic acid biosynthesis, and (d) in amino acid biosynthesis. The enzymes

are indisputably homologous; even a simple BLAST sequence search identifies significant similarities. The

catalyzed reactions are analogous from the perspective of organic chemistry. The functions of the proteins,

from their roles in pathways, are quite different. An annotation strategy that assumes homologous

proteins confer fitness in their host organisms in an analogous way would be defeated by this example.
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however. The biologist certainly does not regard the function of these proteins as
equivalent.
But should they? All of these proteins use fumarate as a substrate. They all, in the

language of the chemist, add the elements of H–X to fumarate using a Michael
reaction, where the carboxylic acid functional group acts as an electron sink. This
type of language is very close to that used by the Enzyme Commission when it
assigns ‘‘EC’’ numbers to enzymes. In the language of the chemist, all of these
proteins have analogous function because they all catalyze an E2 addition reaction
to fumarate. Evolutionary recruitment in this family presumably occurred because of
this mechanistic similarity (Gerlt and Babbitt, 1998).
The point to be made here is not that one cannot infer function by homology

alone. Nor do we wish to argue that the biologist’s view of function is right, while the
Enzyme Commission’s view is wrong. Rather, the point to be taken is that the
analysis of function is tied to the language used to describe it. The language used to
describe the systems determines whether one sees ‘‘equivalency’’ or ‘‘non-
equivalency’’.

Orthologs and Paralogs: Functional Analogs?

The organismic contexts of orthologs and paralogs are sufficiently different that
the two can be analyzed separately in functional terms. Some degree of functional
non-analogy is especially likely in paralogs, even when the basics of their behaviors
are similar. If a gene duplications creates two genes, and if the duplicates are retained
for long periods of time within a single genome following the duplication event, then
it is nearly axiomatic that the duplicates have not served truly redundant functions.
If they have, then one should have been lost (where ‘‘loss’’ includes conversion to a
pseudogene) (Trabesinger-Ruef et al., 1996) without any corresponding loss of
fitness.
It is commonly believed that orthologs are more likely to have analogous

functions than paralogs. For this reason, databases that explicitly collect
orthologous sequences have been constructed to facilitate the study of proteins
with presumably analogous function. Particularly well known is the COG database
(Tatusov et al., 1997) developed by Koonin and his collaborators.
Certainly, to the extent that the environments of the descendent taxa are

analogous, and the demands imposed by natural selection in the two lineages are
analogous, the behaviors expected from orthologous proteins in the two taxa
are expected to be analogous. Indeed, to the extent that these conditions hold, all of
the differences in the sequences of two orthologous proteins are expected to be
attributable to neutral drift.
At the same time, it is clear that two species living in the same physical space,

almost by axiom, cannot have identical strategies for survival. This, in turn, implies
that two orthologous proteins may not contribute to fitness in exactly the same way
in two species, nor are the behaviors demanded by the two environments exactly the
same. This implies the possibility that some of the changes in the sequences of the
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two proteins may reflect differences in the behaviors of the two proteins that are,
respectively, optimized for the two environments.
Encapsulated within these comments are many heated debates in molecular

evolution. We cannot review the neutralist–selectionist dispute here. Indeed, we
believe that this debate has been largely unhelpful to the science, casting issues in an
‘‘either–or’’ fashion about molecules in general, ignoring the evident reality that the
question must be addressed using a formalism that is not ‘‘either–or’’, and requiring
molecule-by-molecule analysis, rather than treating molecules as statistical
aggregates. In these respects, the debate reminded us, as chemists, of the ‘‘non-
classical carbonium ion’’ debate in organic chemistry (Brown 1977), and the
‘‘transition state stabilization versus ‘‘ground state destabilization’’ debate in
mechanistic enzymology. These debates also suffered from a formalism that grouped
molecules together, asked about the behavior of molecules ‘‘in general’’, and did not
focus on individual molecular structures.
For the purpose of developing interpretive proteomics tools, the principal

challenge is to avoid being paralyzed by issues that are important to the principals in
the controversy.

Changing Functional Behavior

Behind annotation transfer stands the notion that proteins related by common
ancestry perform analogous functions in different organisms. A useful dialectic,
therefore, can be established with a tool that suggests that function is not analogous
in homologs.4

In this section, we discuss tools that create inferences that functional behavior
within a family has changed. We begin with models obtained from the MasterCa-

talog, enhanced and rectified as discussed above. For each family, we have in
hand:

(a) A collection of homologous protein sequences, obtained first from the most
recently indexed version of the MasterCatalog, augmented and/or culled as
outlined above.

(b) Top line annotations for each of the family members, which provide an overview
of how the community regards the function of the protein, including those that
might be found in the extended and superfamilies.

(c) An evolutionary tree that captures the best model of the historical past, using
the tools that the user prefers, augmented by alternative trees that will support
robustness tests, and enhanced with the assignment of specific insertions,
deletions, and amino acid replacements to specific branches of the tree, f2 values
dating nodes in the tree, a root on the tree, and normalized Ka/Ks values.

(d) A multiple sequence alignment, also adjusted to reflect the preferred tools of the
user, including gap placement.

4The term is from Dayhoff. Modern terminology prefers the term ‘‘replacement’’ at the amino acid

level, reserving ‘‘mutation’’ for an event that occurs in a DNA molecule.
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(e) Bridges, which indicate other families in the database that might be more distant
homologs, and an understanding of the superfamily within which the family is
embedded.

(f) A set of reconstructed ancestral sequences for ancient proteins from now-extinct
organisms at branch points in the tree. These include a reconstructed ‘‘founder’’
sequence near the root of the tree, the most ancient sequence from which all of
the members of the nuclear family are descendent.

(g) Alignment of theMSAwith a consensus three-dimensional structure obtained, where
possible, from experimental data, together with a predicted secondary structure.

(h) A summary of the general properties of the divergent evolution within the
family, including an overall view of mutability and the adaptive history.

(i) A list of all of the events that have occurred within the family (mutations at the
DNA level, replacements at the protein level) assigned to specific branches on
the tree, and reconstructed sequences throughout the tree.

We then ask what features of change within this evolutionary model are
sufficiently indicative of changes in functional behavior that it is worthwhile
considering hypotheses relating to them. Further, if we can identify these features,
we will ask what can be inferred about when and where they occurred.

Sequence Change as a Surrogate for Change in Functional Behavior

The simplest tool to detect a change in functional behavior looks for a change in
sequence. Certainly, without a change in sequence, the behavior of a protein cannot
change. Conversely, it is axiomatic (from Structure Theory) that whenever two
proteins differ in sequence, even at one site, their behaviors differ. The differences in
behavior can be small, where ‘‘small’’ is a human perception derived from an
operation that experimentally measures the difference. Indeed, the difference might
be so small that the differences cannot be detected by any particular experiment. But
the difference must be there, and this difference in behavior could conceivably have
an impact on fitness.
The neutralist–selectionist dispute has made clear that is difficult to know a priori

whether a behavioral difference, large or small, associated with changes in sequence,
few or many, has an impact on function. Therefore, an indirect approach is needed
to evaluate the potential that sequence changes reflected positive selection for them,
as opposed to the absence of selection against them. The first, according to the
model, represents adaptive change, while the second represents neutral drift.
One approach seeks to define and interpret rates of change in sequence, the

number of amino acid replacements per unit time. As originally proposed, a certain
rate of protein sequence change might be expected purely from neutral drift. This
might accumulate with approximately clock-like behavior, where amino acid
replacements accumulate with a time-invariant rate constant, number of replace-
ments per site per unit time. If this were true, then an episode of sequence divergence
that contains more numerous replacements than expected for the time elapsed would
be one that holds a functional change.
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From a practical perspective, it is difficult to apply this approach to reconstructed
events on an evolutionary tree. Prior to the introduction of the TREX metric, there
has been no particularly useful tool to date nodes on a tree. Even today, there
remains no reliable method to date nodes on a tree when silent sites have
equilibrated.
More seriously, however, an overwhelming body of empirical data suggests that

no clock-like rate constant for amino acid replacement can be found universally in
protein sequences (Ayala, 1999). The historical rate of replacement in amino acids
can vary over orders of magnitude between protein families. This could mean that
some protein families are suffering more adaptive change than other, of course. It
could mean, however, that proteins whose sequences are rapidly diverging are simply
subject to fewer functional constraints; more of their amino acids serve no
‘‘function’’, and then are available to drift.
One approach to resolve this problem seeks the maximum rate of drift. Let us

assume that we could learn the rate by which mutations at the DNA level were
generated and fixed. Let us also assume that this underlying mutation rate were time-
invariant, the same for all sites, and intrinsic to a genome (and therefore the same for
all proteins). Then, proteins that evolved more slowly than they could, given this
intrinsic rate, must be subjects of purifying selection. Proteins evolving more rapidly
must be subjects of positive selections, and those evolving at the same rate as
mutations were introduced and fixed were subject to no selection pressure.
To estimate the natural rate of mutation, the redundancy of the genetic code is

frequently exploited. Due to the redundancy of the genetic code, mutations at the
DNA level can be either synonymous or non-synonymous. Let us assume that
synonymous substitutions, which do not alter the sequence of the encoded protein,
have no impact on fitness. They therefore are sites that suffer mutation without
functional constraint, positive or negative. The rate at which mutations accumulate
at silent sites, therefore, will reflect the rate at which mutations occur and are fixed
independent of selective pressure. Mutations at silent sites were therefore proposed
as approximate metrics of time.
Non-synonymous mutations, in contrast, result in changes in amino acid sequence

which can alter the folding, kinetics, binding specificity, or binding affinity of the
protein. They can therefore be the targets of selective pressures. Starting in 1985, Li
and coworkers proposed that the ratio of non-synonymous to synonymous
mutations might be an indicator of adaptive change (Li et al., 1985). They applied
this first to compare sequences at the leaves of evolutionary trees (leaf-leaf
comparisons), A decade later, the tool was applied to node–node comparisons (Endo
et al., 1996, Trabesinger-Ruef et al., 1996, Messier and Stewart, 1997).
Let us examine the proposal with greater detail. First, let us assume that the rate of

all nucleotide substitutions (transitions and transversions) is equal, and that each site
in the DNA sequence suffers mutation with equal frequency. Consider an idealized
gene encoding a protein that is simply a string of valines (chosen because valine is
encoded by a four-fold redundant coding system). If mutations are introduced into
this sequence at random, initially the ratio of non-synonymous mutations to
synonymous mutations will be 2:1. Every mutation at the first and second positions
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will convert the encoded amino acid to something other than valine, while every
mutation at the third position will be silent.
In such a simple system, it is also easy to calculate the ratio of non-synonymous

and synonymous sites. Here again, it is 2:1, which the first and second sites
considered to be non-synonymous sites, and the third considered to be a
synonymous site. Hence, if divergence is completely without functional constraints
(if, for example, our gene is a pseudogene), then the ratio of non-synonymous to
synonymous substitutions (2), normalized for the number of non-synonymous and
synonymous sites (also 2) will be unity.
The ratio of non-synonymous to synonymous substitutions, normalized for the

number of non-synonymous and synonymous sites, is the Ka/Ks ratio. This is equal
to unity for a gene randomly diverging without functional constraints, such as a
pseudogene. But can the ratio be used diagnostically?
It can for some cases. If the values of the Ka/Ks ratio is significantly greater than

unity, this can be explained under the Darwinian paradigm only by invoking
‘‘positive selection’’. Here, non-synonymous mutations must have accumulated
faster relative to synonymous mutations than can be explained by random fixation of
neutral mutations. In episodes represented by branches of the tree where the Ka/Ks

ratio is greater than unity, some of the mutant children must have been more fit than
non-mutant children.
Many cases are now known where positive selection must have occurred. We

collected these a few years ago and prepared an ‘‘adaptive evolution database’’ for
many plants and vertebrates where adaptive evolution were possible (Liberles et al.,
2001).
The Ka/Ks ratio as a metric for functional change has several obvious limitations.

First, the number of characters used to calculate the ratio is no greater than the
number of amino acids in a protein. Therefore, ‘‘fluctuation’’ error, a type of
sampling error, can make the measurement less precise than desirable, especially
with short protein sequences. There is little that can be done to address this problem
with a protein of a fixed length.
Other limitations can be diminished, although not removed. For example, the Ka/

Ks calculation cannot be applied when the time separating the two sequences is so
large that the nucleotides at the silent sites have equilibrated. As node-node distances
are shorter than leaf–leaf distances, this problem is first addressed by performing Ka/
Ks calculations between nodes. This is the calculation that is built into the Master-

Catalog.
The accuracy of a Ka/Ks ratio obtained from ancestral sequences is determined by

the accuracy of the ancestral sequences, of course. This can always be improved by
increasing numbers of derived sequences, which permits more reliable reconstruction
of ancestral gene sequences. As the most certain feature of our post-genomic future is
an increase in the number of sequences, ancestral sequences will improve over time.
Even so, there is reason to believe that real world factors will prevent Ka/Ks

calculations from being performed indefinitely far back into the past. The number of
speciation events may be insufficient to articulate a tree over a period of time judged
relative to the silent site drift rate to permit reliable reconstruction. Extinction may
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have erased part of the record, placing a limit on the number of derived sequences
that can today be found in the biosphere to increase the articulation of a tree. While
future discoveries are difficult to anticipate, it is not clear that sufficient sequences
have survived in the contemporary biosphere to support the reconstructions that
would be needed to apply the Ka/Ks metric back to the divergence of the three
primary kingdoms of life (archaebacteria, eubacteria, and eukaryotes).
Another limitation to the Ka/Ks ratio as a practical tool arises with poorly

articulated trees in general. Adaptive episodes in sequence evolution can be brief,
and be surrounded by periods of adaptive stasis. Thus, when reconstructing ancestral
episodes of sequence evolution, it is possible (and perhaps likely) that individual
branches of the evolutionary tree will contain both episodes of adaptive evolution
and episodes of conservative evolution. Only if speciation events occurred right
before and right after the episode of adaptive evolution, and if the relevant proteins
from all of the derived taxa have been sequenced, will a branch isolate the episode of
adaptive evolution, and a Ka/Ks ratio for that episode be calculable without dilution
from other episodes. Otherwise, the high Ka/Ks ratios characteristic of adaptive
change in a protein will be averaged with the low Ka/Ks ratios characteristic of no
adaptive change. This implies that high Ka/Ks ratios that might alert the functional
genomicist to a change in function in a protein can easily be diluted to the point
where they cannot be recognized within a background of change.
Other limitations are more fundamental to the method. The first center around the

assumptions of neutrality associated with synonymous mutations in coding regions.
Codon selection bias implies that the mutation of a silent nucleotide need not be
exactly neutral. While a modest codon bias does not have a large impact on the
metric, a changing bias can. Codon bias can change between taxa that are ‘‘closely’’
(by human standards) related, especially in plants (Tiffin and Hahn, 2002).
This limitation will also be ameliorated as more whole genomes are sequenced.

Complete genome sequences will enable us to reconstruct general features of
ancestral genomes, such as codon bias, and how these features have changed
historically. Within plants, for example, we may soon be able to identify branches
within the taxonomical tree where codon bias changed. This will provide the
information needed to correct the tools that apply the Ka/Ks metric. Whole genome
analyses are discussed in detail below.
Another class of limitations in the Ka/Ks ratio as a metric for functional change

arise from the chemical reality of proteins, and how their sequences are related to
their behaviors. Behavior in a protein can radically change even if only a few amino
acids are replaced, as long as the replacements are near an active site. As the Ka/Ks

metric encompasses the entire protein, a few sites that suffer functionally significant
replacement may be lost among a larger number of sites that need not change to
produce new function.
This might not be problematic if these sites drifted, as this would contribute to the

Ka term. Simple models of functional recruitment suggest that the remainder of the
sequence may be constrained from drifting, however, even during an episode of
functional change. At the very least, some residues must undoubtedly be conserved
to retain the ‘‘core’’ behaviors required for both the old and the new functions. A
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well-recognized core property is the folding of the polypeptide chain itself. In
general, recruitment retains the folded protein scaffold.
This means that a high Ka/Ks ratio may characterize only a few of the sites in

the polypeptide sequence, with a low Ka/Ks ratio characterizing the remaining sites.
The Ka/Ks ratio for the sequence as a whole can therefore be significantly less than
unity, even though the sequence evolution includes changes are driven by selective
forces.
We have suggested some crude ‘‘fixes’’ for this problem. These are often intuitively

reasonable, and are very useful within the context of a biomedical research program,
even though they are not supported by any statistical formalism. For example, it
may be possible to identify adaptive episodes by comparing Ka/Ks ratios for different
evolutionary episodes within a single protein family. If we assume that the number of
positions that must be conserved in a protein family to conserve its core behaviors
(e.g., folding) is constant throughout its evolutionary history, and if punctuated
equilibrium (Gould and Eldredge, 1993) at the molecular level is the rule, then one
might expect some episodes to have a Ka/Ks ratio to be higher than the rest in a
biphasic (or multiphasic) distribution of Ka/Ks ratios. The episodes displaying higher
Ka/Ks ratios would be associated with functional change, while those with low ratios
would be associated with conservation of function, regardless of the absolute value
of the ratio of their respective distribution maxima.
Again, the MasterCatalog model serves as a starting point, with its explicit

reconstruction of the sequences of ancestral genes in the tree and pre-calculation of
Ka/Ks values for every branch. We can now ask about the distribution of Ka/Ks

values across the tree for that particular protein family. For families where
functional behavior is conserved over most of the tree, then the typical Ka/Ks value
for a typical branch might be used.
Systematic examination of the proteins with high Ka/Ks ratios may be one

approach for identifying those biomolecules important for the distinctive properties
of different organisms. For example, for 2820 orthologous rodent and human
sequences, the average Ka/Ks ratio (calculated leaf-to-leaf) is approximately 0.2
(Makalowski and Boguski, 1998). Naively as this number is far below the value of
unity that is the hallmark (for example) of pseudogene neutral drift, the Ka/Ks test
might suggest that most mammalian genes have experienced purifying selection
during recent evolution (the last 80 million years).
The Ka/Ks ratio does not lead to a useful hypothesis about functional change when

its value lies between ca. 0.5 and ca. 1.0. At the high end of this region, pseudogene
drift is always a possible interpretation, of course. If no other indicators of
pseudogene status are present (such as stop codons), it is compelling to conclude that
the protein is suffering an episode of adaptive evolution, where the Ka/Ks value has
not convincingly surpassed unity because sites that are rapidly changing are being
hidden beneath sites that must be conserved to retain core function.
The Ka/Ks value is one of the most widely recognized tools for detecting functional

change. It is often incorrectly used, however. For example, in their recent analysis of
the mosquito and Drosophila genomes, Bork and his colleagues used values of Ka/Ks

as an indicator that individual genes are pseudogenes, overlooking the aspects of the
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metric outlined above that suggest, as a more likely interpretation, that these are
proteins suffering adaptive evolution (Zdobnov et al., 2002).
Further, efforts to calculate a Ka/Ks value for a single site seem misplaced. It is

useful to calculate the number of non-synonymous mutations at each site. These can
indicate that natural selection returns again and again to that site to create adaptive
changes. But the normalization can remain the number of synonymous substitutions
per synonymous site over the entire sequence, as long as the entire sequence has
evolved as a unit over the period of time of interest. Conversely, the number of non-
synonymous substitutions per TREX unit is an equally sensible metric of functional
adaptation at a site.

Example: Leptin

Even with these limitations, the Ka/Ks ratio is useful metric to draw inferences, if
only at the level of hypothesis, that relate to change in function. These can be
extremely valuable to a biomedical researcher, even if the hypothesis has an
undefinable reliability, and is unsupported by any metric that a statistician might
recognize.
The protein leptin, for example, is known from genetics to be related to the obesity

phenotype in the mouse. Deletion of the gene from mouse led to overeating and
obesity (Zhang et al., 1994). Following the discovery of the leptin gene in mouse, a
human homolog was sought. This is almost certainly the ortholog, as judged by the
TREX distances. Almost immediately, both academic and industrial biomedical
researchers began research programs using leptin as a potential target for managing
or treating human obesity. As of this year, over 165 grants funded by the National
Institutes of Health make reference to leptin.
Some details of the molecular history of the leptin protein family, however,

suggested that leptin might not be a clear target for drug development as an obesity
gene in humans. A reconstruction of the evolutionary history of the leptin family
(Figs. 10 and 11) found that as primates emerged from the cenancestor of mouse and
human, the leptin gene underwent an episode of rapid sequence evolution involving
many non-synonymous substitutions in the leptin gene (Benner et al., 1998). Indeed,
the reconstructed evolutionary history of the gene family shows that the number of
non-synonymous changes that accumulated in the gene during this episode, divided
by the number of synonymous changes, normalized for the number of non-
synonymous and synonymous sites is remarkably high. The Ka/Ks ratio in this
episode is ca. 2.1 fold higher than that displayed by a pseudogene.
The only explanation consistent with Darwinian theory for this episode is that

leptin was under positive selection pressure (Yang and Bielawski, 2000) as it entered
the lineage leading to hominoid apes, perhaps 40 million years ago (MVA). Mutant
forms of the primitive primate leptin evidently contributed more to the fitness of the
primate descendants than non-mutant forms of the protein. This led us to suggest on
these pages four years ago (Benner et al., 1998), that human leptin may not play a
role in humans analogous to the role it plays in mice. At the very least, a primate
model is recommended for pharmacological analysis of compounds targeted towards
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this system. And now, articles are appearing with titles such as ‘‘Whatever happened
to leptin?’’ (Chircurel, 2000), noting that ‘‘the hormone’s precise physical role seems
to vary from species to species.’’ This was anticipated by the evolutionary analysis.
The leptin example shows how a second generation naturally organized database

can support functional analysis in proteins, identifying targets of biomedical interest,
and guiding pre-clinical drug development in animal models. When developing a
drug targeted against leptin, the tree in Fig. 11 strongly suggests that one use a

Fig. 11. Evolutionary analysis of the leptin family shows episodes of adaptive evolution separating

primate and rodent leptins, indicated by high Ka/Ks values. This alerts the scientist to the possibility that

the leptin homolog in humans need not have the same function as the leptin in mouse, as was concluded

using the homology-implied-analogous function paradigm for database annotation. For the researcher,

this implies that the mouse model may not have predictive value for humans (Benner et al., 1998).

Fig. 10. Non-stationary behavior in the details of sequence evolution, in particular, if more conserved sites

in one subfamily are not the same as those in another, then functionally significant change in behavior is

implied along the branch that connects the two subfamilies. See Benner (1989).
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primate animal model, not a rodent animal model. As is known to all medicinal
chemists, selection of a correct animal model is one of the most important things that
determines the success or failure of pre-clinical research. TheMasterCatalog helps
make this decision correctly.
Eric Gaucher and I have submitted an analysis of the leptin family in light of its

three-dimensional crystal structure. Since the paper is not yet in print, let me
summarize only its broadest conclusions. We first identified the sites that were
suffering amino acid replacements along the branch having a high Ka/Ks value.
These are, of course, more likely to be the residue changes that are important for
the change in function. These are not distributed randomly on the structure. Rather,
they cluster, and cluster suggestively of changing interactions between leptin and
other proteins. This leads to further hypotheses having biomedical significance, and
illustrate how the Firebird analysis is useful practically.

Correlating with Events in the Historical Past

With the MasterCatalog model for an evolutionary family as a starting point,
and using its pre-computed Ka/Ks values, we can immediately identify segments of a
tree where functional change might have occurred. This is at the level of hypothesis,
which can be strong (if Ka/Ks is very significantly greater than unity), or weaker (if,
for example, the case is based on the fact that the Ka/Ks for a branch is less than
unity, but greater than the typical Ka/Ks branch in the protein family).
The next phase of interpretive analysis seeks temporal correlation. For this

purpose, we need to extract dates for the tree. Classically, dates for nodes on trees
have been assigned by noting the taxa that provided the derived sequences. We then
refer to paleontological information to constrain the geological dates when the taxa
might have diverged. This requires that the sequences within the family be true
orthologs.
Once paleontological information is extracted, we can ask whether the molecular

data are compatible with events in changing physiology at the time when the
molecular changes occurred. This is easily illustrated using the leptin family of
proteins. Whenever a mouse is foraging, he/she is just as likely to be food as to find
food. Hominoid apes, in contrast, occupy a very different position in the food chain,
and have a different feeding behavior. For mice, the instinct to forage must be under
tight control, with over 90% of any mouse’s offspring not surviving (on average) to
themselves reproduce. Foraging mice take greater risks in the autumn than in the
spring, balance opportunity with cost, and the corresponding behavioral instinct
must be under strong selective pressure. In contrast, hominoid apes have more
opportunity to learn.
The next step in the cycle of hypothesis generation asks: What did the ancestor of

hominoid apes and rodents look like? Here, we must turn to the paleontological
record.
The first lesson taught to paleontologists is that no fossil corresponds to an

ancestor at the node from which two taxa branch. But as the paleontological record
becomes more complete, it constrains with narrower and narrower bands the date
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that two taxa diverged. Further, a fossil from the paleontological and historical
vicinity of the taxa that represents a last common ancestor can define very well the
physiology of the true ancestor.
For example, the ancestor of hominoid apes and rodents lived in the mid-

Cretaceous (Table 7). In this particular case, the fossil record has improved
dramatically in its ability to describe the animal that was near the divergence of
mouse and humans. A complete skeleton of Eomaia (‘‘dawn mother’’) is preserved as
a pressing, complete with fur imprint (we know how long the animal’s hair was) from
the very early Cretaceous in China (Ji et al., 2002).
Eomaia was more similar in many features of its physiology to mouse than

hominoid apes. The implication is that it was not at the top of the food chain, like
mouse, but not like human. Indeed, the episodes of rapid sequence evolution that is
found on the leptin tree is associated with the increase in size of hominoid apes, a
change that presumably is associated with a change in position in the food chain. It is
not surprising that a protein like leptin, presumed to be involved in managing
feeding behavior, would have an episode of sequence evolution at the time.
It is important to recognize that many of these discussions do not address the

details that are of hot debate among people who specialize in these questions. For
example, we do not know the relative sequence in which the mammal orders
containing rodents (Rodentia), rabbits (Lagomorpha) and humans (Primata)
diverged. The issue has been contentious in the past, is unresolved at present, and
is likely to be both until the rabbit genome is completely sequenced, and perhaps
even after that.
But the reason for the uncertainty in the tree is because the short lengths of the

branches around which alternative trees differ.5 These alternatives are of interest to
specialists in the field. But, as outlined above, they interest us only if the biological
conclusions that we draw are not drawn robustly with respect to small changes.
Therefore, in constructing a evolution-based biological hypothesis, it is worth
re-running the analysis with all possible tree topologies swapped around short
branches, just to see if the biological hypothesis survives these swappings.

Alternative Measurements of Function: Non-Stationary Gamma Models

As noted above, different sites in a real protein sequence are under different
selective constraints. As a consequence, natural selection tolerates replacements at
some sites better than replacements at others. This distribution of mutability can be
captured by a single parameter (alpha) in a gamma distribution.
The gamma model fits the statistician’s culture, and several dozen papers have

now appeared discussing and applying it. The statistical treatment, however, loses
most of the information contained in the sequences themselves. Most specifically,

5This is directly analogous to the ability of evolution-based structure prediction tools to deny

homology. Homology modelling and threading, for example, can only suggest that two proteins might be

homologs. These tools cannot offer a statement that two proteins might not be homologs. This is one

reason why the evolution-based tools for predicting the folded structure of proteins are so valuable.
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aggregation into one parameter (alpha) loses all of the information that is contained
by knowledge of which amino acids are suffering replacement at which sites.
When functional behavior is changing, it is likely that the particular sites where

replacements are tolerated will change too. Some sites that were not critical to the

Table 7

An approximate time scale for the paleontological record, and a layman’s view of major features in the

historical record near this time (with apologies)a

Million years

before present

Name of the era; prominent features

0.0 Pleistocene (Cenozoic)

1.6 Pliocene (Cenozoic)

5 Miocene (Cenozoic)

24.5 Oligocene; (Cenozoic) at the beginning, have the massive cooling of the Earth;

grasslands emerge; this is the radiation of the artiodactyl families deer/antelope/

camels

38 Eocene (Cenozoic) this is the garden of Eden, warm weather.

54 Paleocene; (Cenozoic) warm weather, mammals take over from dinosaurs; the

secondary orders of placentals diverge here (whales, artiodactyls)

this date corresponds to a mass extinction

65 Cretaceous (Mesozoic) the principal orders of plancentals diverge here (primate,

rodent, elephant, carnivora, ungulates); angiosperms become dominant

146 Jurassic, (Mesozoic) first angiosperms, according to Dilcher

208 Triassic (Mesozoic)

by this point, mammals, birds (dinosaurs) and reptiles are diverged); this date

corresponds to a mass extinction

250 Permian (Paleozoic)

280 Pennsylvanian (Paleozoic) coal beds

320 Mississippian (Paleozoic) coal beds, plants heavy on land without very successful

land animals to eat them; animals are starting to go on to the land

Hedges speaks of stem amphibians 338 MYA

345 Devonian (Paleozoic) 370/360 lobe finned fish become tetrapods ready to go on to

land

395 Silurian (Paleozoic) bony fishes

438 Ordovician (Paleozoic) fishes

510 Cambrian (Paleozoic) tunicate versus other chordates probably diverge by end

543 (Paleozoic starts, the start of the Phanerozoic) This is recognized as the last date for

the divergence of the major metazoan phyla, such as worm, fly, chordate

Precambrian

1000 Major lineages probably established, probable eukaryotic fossils

2200 Oxygenic photosynthesis clearly established; certain microbial fossils

3800 First fossils (?)

4500 Earth forms

aThe rodent–primate divergence, for example, was clearly not later than 70 MYA, probably not earlier

than 150 MYA. The marsupial–placental divergence was certainly not later than 150 MYA; Hedges, using

a protein-based molecular clock, suggests 173 MYA, while fossil evidence says 178–143, but is poorly

attested. The mammal–archosaur divergence was certainly not after 310, and probably not before MYA.

Hedges says that it occurred a bit more than 310. The land–fish divergence was certainly not after 338

(Hedges’ date for amphibians), and probably not before 370 Hedges suggests 360 MYA. The bony fish-

cartilaginous fish (shark) divergence was probably around 400 MYA
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previous function (and therefore freer to drift) may perhaps become critical to the
new function.
It is not clear that statistical models will help. Indeed, statisticians as notable as

Felsenstein have despaired at the possibility of ever capturing non-stationary, time
variant behavior within a statistical model (Felsenstein, 2001). Like most
statisticians, Felsenstein proposes another hidden Markov model treatment. Such
treatments, of course, bury useful information still deeper within a mathematical
formalism.
More preferable is to return to a chemical analysis, one that treats the molecule

and its individual sites individually. Consider a family of proteins divided into two
subfamilies, SF1 and SF2, each with its own set of functional behaviors, where the
two sets are not equal (Fig. 10). Let us also define a set of sites in each subfamily, C1

and C2, at which natural selection does not tolerate replacement, and a set of sites in
each subfamily, V1 and V2, at which natural selection does tolerate replacement. Let
us further assume that the differences in the sets of functional behaviors results in
two inequalities: C1aC2, and V1aV2. This means that sites exist where replacement
is not tolerated in SF1, but is in SF2, and where replacement is not tolerated in SF2,
but is in SF1.
Given a sufficient articulation of the trees in the two subfamilies, the two

inequalities will be apparent above fluctuation. This then provides a test for change
in functional behavior independent of the test involving Ka/Ks ratios. In some senses,
it is superior to the Ka/Ks ratio test. Changing specifics in the distribution of more
and less replaceable sites in a protein sequence can be observed even after
synonymous sites have suffered so many mutations that their occupancy has
equilibrated.
Further, the analysis retains much more information, about which sites are

involved. Knowing which sites are involved, we can apply other tests supported by
theMasterCatalog. First, we can examine where the sites with changing mutability
are located within the three-dimensional crystal structure. This process can bring to
bear the insight and intuition of the organic chemist to bear on the problem.
The first case where this tool was applied, together with a crystallographic

analysis, was reported on these pages in 1989 (Benner, 1989). The alcohol
dehydrogenases from yeast and mammalian livers are homologous. They perform
different functions, however. In different yeasts, the enzyme has the same, narrow
substrate specificity, interconverting only acetaldehyde and ethanol, and this
substrate specificity has clear physiological significance, as the catalytic process that
recycles NADH to regenerate NAD+ in the glycolytic pathway. One expects the
amino acids lining the pocket in the enzyme where the substrate binds to be highly
conserved to maintain this substrate specificity.
In contrast, the enzyme from mammalian liver plays (according to the best

hypothesis) a role in the detoxification of foreign organic compounds, which
themselves have varying (and not necessarily anticipatable) structures. Many
mammals have paralogs of the liver alcohol dehydrogenase, having different
substrate specificities. One expects that sites near the substrate binding site of
mammalian ADH to be highly variable.
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Benner (1989) presented a three-dimensional crystal structure highlighting sites
that were variable in mammalian ADH subfamily, but conserved in the yeast ADH
subfamily. The entire substrate binding region of the active site was highlighted. This
is a graphic illustration of how a three-dimensional model can be used to make a
compelling case that non-stationary behavior in the replacability at different sites
indeed indicates change in function.
Gaucher et al., (2001a) made another compelling case by observing non-

stationary, time-variant gamma distributions in the family of elongation factors
related to EF-Tu. These proteins are involved in the translation of mRNA in protein
synthesis, and serve to present charged tRNA molecules to the ribosome. They are
among the most highly conserved proteins on Earth, and no one suspected (from a
first generation evolutionary analysis) that they would display functional diversity.
Indeed, they would seem to be archetypal examples of a protein that performs the
‘‘same’’ function in all three kingdoms of life. If transfer of the linguistic construct
describing function from one member of a protein family to another is ever secure, it
would seem to be secure with elongation factors.
This study began with a statistical perplexity. The alpha parameter for the

subfamily of eukaryotic elongation factors, and the alpha parameter for the
subfamily of bacterial elongation factors were comparable, but not comparable to
the alpha value calculated to the family as a whole. Thirty EF-Tu/EF-1a protein
sequences were aligned over 380 sites using the alignment program Darwin.
Replacement rates per site for bacterial and eukaryotic EFs were estimated using a
gamma-based, maximum likelihood (ML) model for protein sequences (JTT + G)
and the phylogeny of Baldauf et al. (1996) for EF-Tu and EF-1a. An a of 0.78 was
calculated for the entire tree, with a standard deviation (SD) of 0.05 using parametric
bootstrapping (evolutionary simulations) (Swofford et al., 1996). The a values for
the bacterial and eukaryotic subtrees were significantly different from that for the
entire tree (0.46 and 0.38, respectively). These reductions in a for bacteria and
eukaryotes alone are expected of a non-stationary process.
Thirty seven percent of the sites had essentially the same rate in the two groups

(rate difference of B0), as expected under a stationary gamma process. However, 18
and 21 sites had evidently evolved >2 standard deviations faster in bacteria than
eukaryotes, and vice versa, respectively. These 10% of the sites are most responsible
for the covarion characteristics of EF-Tu and EF-1a.
Residues displaying abnormal evolutionary behavior were then mapped to a three-

dimensional model of the protein based on a crystal structure of ET-Tu. These were
used to generate structural hypotheses for the different behavioral differences that
were known. For example, bacterial EF-Tu binds GDPB100-fold tighter than GTP.
Eukaryotic EF-1a, in contrast, binds both with similar affinities. EF-Tu regenerates
its active form by binding to the single-subunit nucleotide exchange factor EF-Ts.
EF-1a requires the multi-subunit nucleotide exchange factor EF-1bgd. EF-1a in
eukaryotes also interacts with the cytoskeleton as it moves from the nucleus to the
cytoplasm. EF-Tu, in bacteria, have no nucleus to move from.
Non-stationary behavior in this case indicated very subtle changes in functional

behavior, for sure. But they are meaningful. The Firebird analysis led to predictions
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about the roles of specific residues that are functionally important, for different
functions, in the two subfamilies of elongation factors. Several of these predictions
have subsequently been validated (Gaucher et al., 2001b). It is interesting to note
that virtually every specialist in the field of ‘‘elongation factors’’ had overlooked the
phenomenon that was caught by the Firebird analysis.

Homoplasy

So far, we have emphasized features of divergent evolution that indicate a change
of function. High Ka/Ks ratios and non-stationary time-variant features of amino
acid replacement can both point to a branch on a tree that represents the episode
when functional behavior changed. Addition of information from secondary,
tertiary, or quaternary structure can provide a confidence that can come only when
chemical analysis is done to the chemical system.
These tools can also be metrics for the conservation of function. That is, a low Ka/

Ks value, or a stationary gamma model, indicate that annotation transfer across the
portion of the tree where it holds is likely not to be extremely deceptive.
Many features of the divergent evolution within a protein sequence family can

provide indication of functional conservation. Let us consider just two. The first is
homoplasy.
Homoplasy is defined as a character similarity that arose independently in

different subfamilies of an evolutionary tree (Strickberger, 2000). Molecular
homoplasy is best illustrated by an example (Fig. 12). Homoplasy so defined is the
observed phenomenon; no statement is made as to the mechanism by which
homoplasy arises. It may reflect selection pressures. The MasterCatalog gives us
the opportunity to systematically search for molecular homoplasy in the database as
a whole.
At one level, homoplasy is simply the statement that selective pressures are forcing

the protein to select from a subset of the 20 standard amino acids. Thus, it is similar
to the bias that is seen in membrane proteins, for example (where residues are chosen
more frequently from a subset of hydrophobic amino acids than in the database as a
whole). Homoplasy is more. Not only (in the example in Fig. 12) is position 30

Fig. 12. An example of homoplasy taken from the evolution of alcohol dehydrogenase from yeast

(position 30). No matter what the reconstructed ancestral sequences are, at at least three points in the tree,

a P-A substitution occurred independently.
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limited to A and P, but the selection pressures have toggled between the two more
than once in the module’s evolutionary history.
This is, of course, a signature that a functional constraint is conserved in the

various branches of the tree across which homoplasy is observed. For this reason,
molecular homoplasy is expected to be a contrarian signature to high Ka/Ks or non-
stationary covarion behavior in a protein. We expect it to occur more frequently with
proteins that are not undergoing functional recruitment.
Some informative features are already evident from preliminary work. For

example, a preliminary search of 38 protein families with high resolution crystal
structures identified over 2000 examples of molecular homoplasy. These were
characterized first by the nature of the amino acids identified. A number of very
obvious patterns emerged. First, the majority of the examples involve the
interchange of hydrophobic side chains of nearly identical volume. The homoplasy
involving I and V was the most frequent. It occurred 230 times in the dataset. The
I/V molecular homoplasy was far more abundant than the next most popular
hydrophobic/hydrophobic homoplasy, F/Y, which was found 68 times, and the I/L
hydrophobic/hydrophobic homoplasy, which was found 44 times. As might be
expected, the majority of these were buried in the three-dimensional structure of the
protein.
The most interesting homoplasies are those that involve multiple steps. For

example, the Pro/Gly homoplasy (at the codon level, CCN to GGN) requires two
substitutions. Either of these alone creates a change in the encoded amino acid
(CGN, Arg, or GCN, Ala). Observing examples of these without observing the
intermediates anywhere else in the tree suggests that selection pressure is remarkably
strong at this position, even though two amino acids appear to be nearly equally
suited to perform function.
Molecular homoplasy indicates a constraint on structure that implies a constant

behavior, which in turn implies a constant function. If this is true, it should correlate
negatively with Ka/Ks ratios. That is, homoplasy should be found less frequently in
branches separated by a branch with a high Ka/Ks ratio than in branches not
separated by such a branch. Case studies developed under this project will develop
ways to exploit such a correlation.

Compensatory Changes

The conservation of a fold after extensive divergences raises the possibility that
amino acid substitutions at one position in a polypeptide chain might be
compensated by substitutions elsewhere in a protein. For example, if a Gly at one
position inside the folded protein core is replaced by a Trp, it might be necessary to
substitute a Trp by a Gly at a position distant in the sequence but near in space to
conserve the overall volume of the core, and therefore the overall folded structure.
These assume that if a substitution is not compensated, the organism hosting the
protein is less fit.
Individual examples of compensatory changes in proteins have been proposed

(Oosawa and Simon, 1986), both by analysis of families of natural proteins with
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known structures (Lesk & Chothia, 1980, 1982; Chothia and Lesk, 1982; Altschuh
et al., 1987; Bordo and Argos, 1990). In these examples, amino acid residues distant
in the sequence but near in three-dimensional space in the folded structure have been
observed to undergo simultaneous compensatory variation to conserve overall
volume, charge, or hydrophobicity.
Compensatory covariation has been used in the prediction of the tertiary

folds. For protein kinase (Benner and Gerloff, 1991), for example, an anti-
parallel beta sheet was predicted for the core of the first domain because of two
specific compensatory changes identified in consecutive strands in the predicted
secondary structural model. The subsequently determined crystal structure (Knight-
on et al., 1991) showed not only that antiparallel beta sheet existed, but that the side
chains of the two residues undergoing compensatory covariation were indeed in
contact.
Systematic studies have suggested, however, that the compensatory covariation

generates only a small signal. The early work by Lesk and Chothia with the
globin family found that replacements of hydrophobic residues in the core of the
protein fold are usually accommodated by small shifts of secondary structural
elements rather than by size complementary amino acid substitutions (Lesk and
Chothia, 1980, 1982; Chothia and Lesk, 1982). More recent studies have suggested
that a weak compensatory covariation signal might exist (Taylor and Hatrick, 1994;
Shindyalov et al., 1994; G .obel et al., 1994; Neher, 1994). Some authors
have doubted, however, that the signal is adequate to be useful in structure
prediction (Taylor and Hatrick, 1994). Others have been more optimistic (Neher,
1994; Shindyalov et al., 1994). More recently, Chelvanayagam et al. pointed out
that the signal might be improved if examples of compensatory covariation
were sought within explicit evolutionary context (Chelvanayagam et al., 1997,
1998).
In the literature, compensatory changes have been sought by comparing the

sequences of two extant proteins from contemporary organisms. In principle, any
position where an amino acid residue had undergone substitution at any point in the
time separating the two proteins via the common ancestor might be paired with any
other position that had also suffered substitution in this time. Such an approach is
problematic because the evolutionary time separating two contemporary protein
sequences can be long; in years, it is twice the time since the most recent common
ancestor of the two proteins.
With Kaoru Fukami from the National Institute of Genetics in Japan (Fukami-

Kobayashi et al., 2002), we examined 71 families of proteins from the MasterCa-

talog to learn whether reconstructed ancestral sequences will generate a more useful
signal for compensatory covariation than can be obtained by examining extant
sequences. We noticed anecdotally that covariation was more likely to occur along
branches with low Ka/Ks values. This makes sense, as compensation is necessary only
if function is conserved. Case studies developed under this project will test this.
Frequently, the charge compensatory signal is weak, perhaps even weaker ‘‘than

expected.’’ We might be disappointed in this fact, because it limits the technological
value of the signal (in predicting the three-dimensional fold of a protein, for
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example). Balancing this disappointment, however, may be the significance of the
scientific implications of this observation.
Charge compensatory covariation might be weak because the coulombic

interactions being sought may themselves be largely unimportant to the selective
fitness of proteins. Gaining or losing them, in this view, has insufficient impact on
fitness to ensure that natural selection will prevent uncompensated charge reversals
from entering the sequence database. This implies a limit to the tool generally, one
imposed by the physical organic chemistry of the protein sequences.
An alternative explanation should be considered, however. Observation of a

compensatory pair of substitutions implies that natural selection preserved some
global feature of a protein during the episode represented by the branch between two
nodes. This, in turn, implies some degree of constancy in the behavior of the protein
before and after the episode where compensatory change has occurred. In this view,
compensatory substitution patterns should be observed only in protein families
whose behavior must remain largely constant during this branch. This, in turn,
implies that compensatory covariation should be observed only during episodes
where ‘‘function,’’ defined as the behavior that contributes to fitness, is largely
conserved.
Conversely, when functional behavior is changing, there may be no need to

compensate individual replacements in a sequence. Indeed, an uncompensated
change is more likely to generate a protein with different behaviors, whose (now)
different behaviors contribute most to the (now different) requirements for fitness. In
this view, compensatory covariation should not be observed, or should be observed
less frequently, whenever functional behavior is changing.
In this view, compensatory covariation is scarce (at least when compared to

perhaps naive expectations) because branches of an evolutionary tree where
functional behavior is rigorously conserved are scarce. This is, of course, a
controversial suggestion, again relating to the neutralist–selectionist dispute.
Given this observation, compensatory substitutions may become a powerful tool

in functional genomics, complementary to Ka/Ks values that are widely used to detect
change in functional behavior (Li et al., 1985). Here, compensatory changes would
indicate functional constancy, while uncompensated changes would indicate
functional change. Because compensatory analysis rests on protein sequences, while
the Ka/Ks value requires measurement of silent substitution rates, and because silent
substitution rates are frequently rather high, this metric for functional recruitment
may ultimately prove to be more valuable than Ka/Ks ratios.

A Combination of These

This discussion makes evident the power of second generation tools to analyze
function within a single protein family. Unanticipated, however, is the power of
these when combined. In this combination, reinforcing and contradicting metrics
support with varying degrees the emergence of hypotheses. These are summarized in.
Tables 8,9 and 10.

S.A. Benner / Advan. Enzyme Regul. 43 (2003) 271–359328



Testing Hypotheses with Experimental Paleobiochemistry

As we have noted elsewhere, the hypothesis, generated in silico using these tools,
can be tested by an experiment in resurrective paleobiochemistry. In this experiment,
the proteins at the nodes on each end of the branch suspected of holding a
discontinuity in functional behavior are resurrected and studied in the laboratory.

Table 8

A summary of tools used to analyze change in functional behavior

I. Tools that detect change in functional behavior along a branch

A. High rates of amino acid replacement per unit time along a branch

B. High ratios of silent to non-silent substitution along specific branches of an evolutionary tree

including tools that address normalization issues

C. Non-stationary gamma models in subfamilies connected by a branch

D. Low amounts of compensatory covariation

E. Low amounts of homoplasy across the branch

II. Tools that indicate conservation of functional behavior along a branch

A. Compensatory changes

B. Homoplasy across the branch

C. Low rates of amino acid replacement per unit time along a branch

D. Low ratios of silent to non-silent substitution along specific branches of an evolutionary tree

including tools that address normalization issues

III. Tools that identify individual sites involved in changes in functionally significant behavior.

A. Sites changing along branches with high rates of replacement.

B. Sites changing in episodes with high Ka/Ks values, minus sites changing in episodes with low

Ka/Ks values.

C. Sites causing non-stationary gamma behavior

D. Sites suffering replacement not randomly scattered on the folded protein

E. Sites that suffer replacements repeatedly

F. Replacement on the surface of the folded protein clustered in space and time

IV. Tools that identify individual sites involved in conserved of functionally significant behavior

A. Sites suffering compensatory changes

B. Sites displaying homoplasy

C. Sites that do suffer replacement are scattered on the fold, generally on the surface

V. Tools that involve correlation between the evolutionary histories of two families of proteins.

A. Correlating the topology of evolutionary trees in two families of proteins.

B. Correlating the connectivity of proteins in a gene family.

C. Dating events in the molecular history.

D. Correlating evolutionary events in two protein families occurring at approximately the same

time.

E. Correlating evolutionary events in two protein families that are associated with analogous

behavior involving expressed/silent ratios.

VI. Tools that involve correlation between the evolutionary history of a family of proteins and the

evolutionary history of the organism as known from some source other than genomic sequence

data, including paleontology, geology, ecology, ontogeny, phylogeny, or systematics (collectively

known as the ‘‘non-genomic record’’).

A. Correlating the topology of an evolutionary trees and the non-genomic record.

B. Correlating features of patterns of evolution in specific branches in the evolutionary tree with

the non-genomic record.

C. Correlating evolutionary events in several protein families occurring at approximately the

same time with the non-genomic record.
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The firebird Recipe

For students who wish to play the game, we provide here a step-by-step recipe for
performing a Firebird analysis of the single family.

1. Find in the MasterCatalog the families of modules from which the target protein
is built.
1.1. Download these
1.2. Assemble full length sequences from these

2. Complete the inventory of homologs (optional)
2.1. Add sequences of your own
2.2. Identify genes that have been entered since the last MasterCatalog was

built.
2.3. Go to the current whole genomes, and get a complete inventory of the

homologs in these.
3. Rectify the multiple sequence alignment and tree

3.1. Apply alternative tools to construct the multiple sequence alignment and tree
3.2. Apply alternative non-classical strategies to build the tree

3.2.1. DNA instead protein-based analysis
3.2.2. Distance-based tool using gamma models, or other refined distance

metrics
3.2.3. Incorporate paleontological information to constrain trees
3.2.4. Use TREX distances to construct trees
3.2.5. Hybrid constructions, applying different tools to different branches of

the tree

Table 9

Signatures of a branch having discontinuities in functional behavior

A high Ka/Ks

A Ka/Ks value higher than the norm for the rest of the protein family

A change in replaceable sites in different sub-branches joined by the branch

Different patterns of homoplasy on different sides of the branch

A branch with abnormally low compensatory covariation, compared with other branches in the tree

Non-canonical placement of mutable residues along this branch in the three dimensional structure.

Table 10

Tools to display residues with special evolutionary properties

Displays based on its sampling of the 20 amino acids (a profile)

Displays based on the mutability of the position across the tree

Displays of positions that have non-stationary patterns of mutability across the tree

Displays of positions that have ‘‘accelerated evolution’’

Displays of positions that have a homoplasy history, locally and globally

Displays of positions that suffer mutation on branches with high Ka/Ks

Displays of positions that suffer mutation on branches with low homoplasy
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3.2.6. Build trees with alternative sampling of the database (robustness to
sample size)

3.3. Refine gap placement
3.3.1. Identify gaps introduced by gene finding mistakes6

3.3.2. Place indel events on specific branches of the tree
3.3.3. Refine MSA if crystal structures available

3.4. Retain alternative alignments and trees for use to test robustness of
biological conclusions

4. Correlate the tree with the paleontological and geological record
4.1. Assigning TREX f2 values to nodes in the tree
4.2. Assign TREX distances to the tree
4.3. Placing the root on the tree.
4.4. Obtain a rate constant for silent transitions on branches of the tree

4.4.1. Using datable orthologs from the tree itself
4.4.2. From whole genome analysis (see below)

5. Perform a Firebird analysis
5.1. Determine typical global characteristics of the tree

5.1.1. PAM width
5.1.2. Typical Ka/Ks ratio for a typical branch
5.1.3. Calculate parameters of the gamma model for the tree overall

5.2. Dissect the tree into subtrees
5.2.1. PAM width of subtree
5.2.2. Typical Ka/Ks ratio for a typical branch in subtree
5.2.3. Calculate parameters of the gamma model for subtree

5.3. Identify branches where function might be changing
5.3.1. Identify all branches that have high rate of amino acid replacement per

unit time
5.3.2. Identify all branches that have high Ka/Ks ratios
5.3.3. Identify all branches that have high Ka/Ks ratio relative to the typical

ratio in the subfamily
5.3.4. Identify all branches that have high Ka/Ks ratio relative to the typical

ratio in the family
5.3.5. Identify subtrees with different gamma model parameters

5.4. Identify branches where function might be conserved
5.4.1. Identify all branches that have low rate of amino acid replacement per

unit time
5.4.2. Identify all branches that have low Ka/Ks ratios
5.4.3. Identify all branches that have low Ka/Ks ratio relative to the typical

ratio in the subfamily

6We do not wish to deny the importance of determining the precise order of branching of phylogenetic

trees around short branches. The fact remains, however, that alternative branchings do not, as a rule, alter

the biomedically relevant conclusions that are drawn from an evolutionary analysis. Therefore, those

interested in practical applications of genome sequences using evolutionary models need not concern

themselves with controversies of this type.
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5.4.4. Identify all branches that have low Ka/Ks ratio relative to the typical
ratio in the family

5.4.5. Identify subtrees with uniform gamma model parameters
5.4.6. Identify branches with large amounts of compensatory covariation
5.4.7. Identify subfamilies large amounts of homoplasy

6. Residue by residue analysis
6.1. Establish a correlation between the MSA and a representative crystal

structure
6.2. Identify sites potentially involved in adaptive change

6.2.1. Sites changing along branches with high rates of replacement
6.2.2. Sites changing in episodes with high Ka/Ks ratio
6.2.3. Sites causing non-stationary gamma behavior
6.2.4. Sites that suffer replacements repeatedly

6.3. Map sites potentially involved in adaptive change on the crystal structure
6.3.1. Identify such sites that are on the surface
6.3.2. Identify such sites that are near the active site
6.3.3. Identify such sites that are interior to the fold.
6.3.4. Analyze spatial relation of multiple sites.

6.4. Identify sites potentially involved in adaptive stasis
6.4.1. Sites that display homoplasy
6.4.2. Sites that are highly conserved
6.4.3. Sites that display compensatory replacement

6.5. Map sites potentially involved in adaptive stasis on the crystal structure
6.5.1. Identify such sites that are on the surface
6.5.2. Identify such sites that are near the active site
6.5.3. Identify such sites that are interior to the fold.
6.5.4. Analyze spatial relation of multiple sites.

7. Consider correlations outside of the family
7.1. With other protein families
7.2. With non-sequence records, including records from paleontology, geology,

ecology, ontogeny, phylogeny, or systematics (collectively known as the
‘‘non-genomic record’’).

Example. Why Do Pigs Have Three Paralogous Genes for Aromatase?

Logan Graddy, a masters degree candidate working with Rosie and Frank
Simmen, presented a simple question: Why do pigs (Sus scrofa) have three genes
encoding aromatase? Aromatases are enzymes, dependent on cytochrome P450, that
catalyze a three step reaction that converts an androgenic steroid to an estrogenic
steroid. The paralog structure of the aromatase gene family in vertebrates is complex.
Two aromatase genes are known in goldfish, for example (Callard and Tchoudakova,
1997). In contrast, only a single gene is known in the horse (Boerboom et al., 1997),
the rat (Hickey et al., 1990), and the mouse (Terashima et al., 1991). Oxen have both a
functional gene and a pseudogene built from homologs of exons 2, 3, 5, 8, and 9
interspersed with a bovine repeat element (F .urbaX and Vanselow, 1995). In several
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mammalian species, including humans and rabbits, a single gene (Harada, 1988;
Delarue et al, 1996) yields multiple forms of the mRNA for aromatase in different
tissues via alternative splicing (Simpson et al., 1997; Delarue et al., 1998).
Logan expected to find two paralogous aromatases in pigs because two are

found in goldfish. This expectation itself captures an evolutionary concept. In
this concept, the last common ancestor of pigs and fish had two genes for aromatase,
and the number of aromatase genes is conserved since pigs and goldfish diverged. If
this model were true, we would ask what we know about that ancestor. It lived
perhaps in an Ordovician ocean. It certainly laid eggs. It probably resembled a bony
fish more than a shark or an amphibian, and certainly more than a pig.

Fig. 13. A tree showing that the pig aromatase paralogs diverged after the divergence of pigs from oxen.
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These thoughts would lead to the question: Why would an egg-laying fish-like
creature living in an Ordovician ocean need two proteins that catalyze analogous
reactions for the synthesis of estrogens? Why would these two functions be conserved
in the subsequent 350 million years?
A simple click on a MasterCatalog family shows that this is not the story

with the pig (Fig. 13), Here, the pig paralogs arose near the time when pigs diverged
from oxen, perhaps 60 MYA in the Eocene. The average branch in the aromatase
evolutionary tree has a value of Ka/Ks of 0.35. Inspection of the tree shows that the
highest Ka/Ks values anywhere in the mammalian aromatase family (0.85 and 0.66)
are found within the divergent evolution of the pig aromatases, in the branch leading
to the embryonic and placental paralogs.
The evolutionary history of the aromatase family was then analyzed using the

TREX analysis. Using a fixed single lineage first order rate constant of 3� 10�9

changes per base per year, the TREX analysis indicated that fish and land
vertebrates diverged 340 MYA, birds and mammals diverged 250 MYA, primates
and ungulates diverged 73 MYA, horse and artiodactyls diverged 71 MYA, and pigs
and ruminants diverged 62 MYA. Each of these dates is close to the date suggested
by the paleontological record (Carroll, 1988).
The TREX dating was used to assess two alternative models to explain the

triplication of aromatase gene family in pigs. The first, advanced by Callard and
Tchoudakova (1997), holds that the physiological specialization of aromatases
through the formation of paralogs occurred early in vertebrate divergence, perhaps
350 MYA, before fish and mammals diverged. If this were the case, then a functional
explanation for the aromatase genes must be sought in fundamental features of
vertebrate developmental biology, those that emerged early in vertebrate evolution.
Conversely, the triplication of aromatase may occur in response to the domestication
of pigs.7 In this case, a functional explanation for the aromatase genes would be
found in the selective pressures applied by breeding programs.

7This is a new invention. When an intron is missed, the protein sequence in which it was missed has an

insertion relative to other homologs in a multiple sequence alignment. When a segment is removed under a

mistaken impression that it is an intron, it leaves a gap relative to other homologs in a multiple sequence

alignment. We could in principle identify incorrectly removed/missed introns by looking for gaps. The

difficulty is that indel processes occur naturally. Therefore, the problem of intron assignment rectification

based on MSA alignment analysis comes down to trying to detect which gaps in an alignment arise

through true insertion/deletion events in the history of the protein family, and which arise through

mistakes in gene finding/intron finding. The strategy is to recognize that when a gap is created through a

true indel event, the segment inserted/deleted is not random. Rather, true indels occur in parsing regions,

as defined by the Benner parent patent. Therefore, a gap that does not occur in a parsing region defined by

the sequences of the other proteins in the MSA has a higher probability of arising from a misassigned

intron (over or under). The amino acids found in positions just before a gap in the gapped sequence (A),

just after a gap in the gapped sequence (B), just before the position of the gap in the aligned sequence (P),

just after the position of the gap in the aligned sequence (R), and in the insertion in the ungapped sequence

(Q), do not have the same distribution as the amino acids in the database as a whole, when the gap is

derived from a true, historical event:

XXXA———BXXXX

XXXPQQQQQQQQQRXXXX
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The TREX distances separating the three pig isoforms range from 0.154
(corresponding to a distance of 51 million years between the proteins) to 0.199
(corresponding to a distance of 66 million years). Recognizing that the total
distances between two proteins are twice the distance along a single lineage from the
point of divergence to the modern protein (half of the distance occurs along one
lineage after divergence, and half of the distance occurs along the other lineage),
the TREX dates suggest that the first duplication led to the three porcine aromatase
genes occurred ca. 33 MYA, and the second occurred ca. 25 MYA.
An evolutionary tree constructed from these TREX distances is consistent with

these conclusions, showing that the porcine aromatases branched after the lineage
leading to pig diverged from the lineage leading to ox (Fig. 13). This tree shows a
different branching order for the three porcine paralogs than the tree based on
amino acid sequences, something not uncommon in the presence of substantial
adaptive evolution. Nevertheless, the data are consistent with an evolutionary model
that holds that the ancestor of pig and oxen (approximated in the fossil record most
closely by the now extinct Diacodexis, which lived perhaps 55 MYA) contained a
single aromatase gene, and that the paralogous genes in pig arose ca. 25 million years
later.8,9 Thus, the paralogs in pig can be explained neither in terms of the
fundamentals of vertebrate reproductive endocrinology (established in the

(footnote continued)

An empirically derived set of parameters can distinguish more likely and less likely gap assignments.

The pattern of evolution in the region designated Q is also different when it is gappable. This includes both

the rate of substitution (it is higher) and the amino acid distribution in the family (it is more like a parse).

One can place the putative indel event on the evolutionary tree. When a true indel occurs, the rest of the

protein responds with an episode of rapid sequence evolution, a change in mutability distribution, loss of

compensatory covariation signal, and other events indicative of changing function. If the putative indel is

not real, these associated signals will not be found.
8The analogy between the evolution of proteins and the evolution of language is a subject of frequent

comment, and we cannot resist making a comment here. Thus, the proto-Indoeuropean language had

words for ‘‘pig’’ (PIE *su-, compare Tocharian B suwo, Latin sus, Greek us, Sanskrit sukara, Church Slavic

svinija, Old High German swin, and English sow; and PIE *porko-, compare Latin porcus, Church Slavic

prase, Old High German farah, etc.), indicating that the pig has been under human domestication for at

least 6000 years, enough time to have suffered a significant impact on its genotype through husbandry.
9A comment can be made about the uncertainty in the TREX dating. The uncertainty can arise from

two sources, standard error (which arises from fluctuation) and systematic error (which arises from the fact

that the evolutionary model does not represent actual evolution). The first can be calculated by standard

statistical approaches using standard statistical assumptions. The second cannot be calculated, as too little

is known about possible systematic errors in the evolutionary model. The f2 distances are each based on ca.

120 two-fold redundant codon systems, and variances can be directly calculated. The calculated distance

from the divergence of the three porcine enzymes to the type II enzyme is 31 million years, to isoform I is

32 million years, and to isoform III is 30 million years. Thus, the average reported (31 MYA) could be as

low as 30 and as high as 32 MYA. All of these dates are in the Oligocene, after the first episode of cooling.

The divergence of isoform I and III ranges from 24-26 MYA. These uncertainties are less than the

uncertainties associated with the dating (from the fossil record) used to set the molecular clock. Further,

the uncertainties are far smaller than are needed to distinguish the three hypotheses that might be used to

explain these paralogs, as arising when fish and pigs diverged, arising in the Oligocene-Miocene periods, or

arising 6000 years ago as a consequence of domestication.
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Oligocene), nor as a consequence of swine domestication (which occurred ca. 6000
years ago).
Instead, an understanding of why pigs have three genes for aromatase must lie in

the environment of (and events that occurred during) a time on Earth 25–33 MYA.
For this we turn to the paleontological, paleogeographical, and paleoclimatological
records of that period, which is near the boundary between the Oligocene (38–25
MYA) and the Miocene (25–5 MYA), two epochs in the Cenozoic ‘‘Age of
Mammals’’ (Prothero, 1994). This period is an unusual one in the history of the
Earth. When characterized globally, the Earth during the Eocene (54–38 MYA) was
warm and tropical, evidently free of ice over the entire planet. By the end of the
Eocene, however, the Earth had begun to suffer a dramatic cooling that was to lower
the mean annual temperature by as much as 151C (Wolfe, 1978). Areas of the planet
became covered with ice. And the impact of the cooling on the biosphere was
dramatic. For example, perhaps 80% of the North American faunal genera became
extinct (Prothero, 1994, pp. 113–114; Stucky, 1990). By the end of the Oligocene and
into the Miocene 25 MYA, however, the global cooling abated, the climate turned
warmer, and the biosphere became more tropical (Azanza, 1993).
Did this climate change occur in the environment where the ancestors of modern

pigs were living just before the Oligocene–Miocene boundary? At this time, the
North American and Eurasian fauna were geographically isolated. Modern peccaries
(Tayassuidae), not pigs, emerged in the New World from ancestral suids that
immigrated from Asia. North America cannot be the site for the triplication of the
aromatase genes in pig, therefore, and its climate 25–33 MYA is irrelevant to an
explanation for the triplication of the aromatase genes in pigs.
Instead, modern pigs most likely emerged in Europe near the end of the Oligocene

((Cooke and Wilkinson, 1978), but see also (Pilgrim, 1941)) from more primitive
entelodonts such as Archaeotherium. During the Oligocene, the Dichobunids (the
most probable ancestral stock) were most abundant in Europe. Likewise, the first
true pig, Propalaeochoerus, from the late Oligocene, was common only in Europe
(Cooke and Wilkinson, 1978; Carroll, 1988). This makes the paleoenvironment of
Europe near the Oligocene–Miocene boundary relevant to the functional implica-
tions of the aromatase gene triplication in pigs.
Various paleobiological evidence suggests that the climate in Europe also

deteriorated in the Oligocene and warmed in the Miocene. A study of amphibian
distribution in the Oligocene of Europe, for example, is consistent with a significant
drop of mean annual temperatures in the European Oligocene. In the Miocene,
amphibians populations rebounded, corresponding to an improvement in the climate
(Rocek, 1996). Likewise, analysis of the deer population suggested a subtropical
climate returning to Europe in the early Miocene (Anzanza, 1993). The Iberian
peninsula in the early Miocene had an intertropical to subtropical climate (Murelaga
et al., 1999). Crocodiles also returned to Europe at the Oligocene–Miocene boundary
(Antunes and Cahuzac, 1999). The presence of arboreal primates in the European
Miocene also suggests a forested environment (Qi and Beard, 1998). Each of these
facts (and many others) suggests that the second duplication of the aromatase gene
in pigs occurred at the same time as the return of subtropical and warm temperate
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forests and woodlands to Europe, the type of environment for which suids are best
adapted (Fortelius et al., 1996).
Immediately thereafter, the suids underwent a significant radiative divergence, and

came to occupy all of the Old World. By the early Miocene, the two basal members
that were to lead to all modern pigs, Hyotherium and Xenochoerus, were widespread
in Europe, Asia, and Africa. The amelioration of the climate evidently assisted in this
spread. For example, the pigs now in Africa apparently came from southwest Asia in
the Early Miocene. A fossil of this date of a tetraconodontine pig has been reported
from the Levant (van der Made and Tuna, 1999), through which the pigs would have
migrated to get from Eurasia to Africa, and which was a tropical environment at the
beginning of the Miocene (Tchernov, 1992). In the middle and late Miocene, modern
suids had diversified in Europe in further response to the change in the paleoclimate
(Fortelius et al., 1996).
Why might a change in climate with a return of forested (and perhaps tropical)

ecosystems have led to a selection of pigs that had three different aromatase genes?
We turned to porcine reproductive physiology for insight. We recently found that the
type III aromatase was expressed by the embryo between day 11 and day 13
following fertilization, during the late pre-implantation period (Choi et al., 1997a,b).
The estrogen generated by the type III isoform causes uterine undulation. This
undulation, in turn, is expected to cause the spacing of the ca. 30 eggs that are
fertilized in a typical conception, which eventually yield the 8–12 piglets that are
normally birthed. In pigs, if the litter does not contain at least 5 individuals, the
entire conception is aborted. Thus, the embryonic form of aromatase may have a
role in spacing the embryos uniformly around the uterus, and preventing abortion.
These are useful adaptations if one wants to have an increased litter size.
Evidence in the paleontological record suggests that the size of the litter in pigs

increased dramatically 25–30 MYA, at the same time as isoform III of aromatase
was generated by triplication, the local paleoclimate warmed, and the pigs began a
major radiative divergence. The ancestral suid Archaeotherium, disappearing from
the fossil record at the end of the Oligocene, may have given birth to a single pup. All
of the contemporary forms of pigs arising from the divergence of Hyotherium and
Xenochoerus, known from the Early Miocene, have large litter sizes. Further,
Archaeomeryx, the early Eocene artiodactyl that is presumed to be the ancestral
ruminant, resembles the contemporary chevrotain, which also births a single pup.
The biogeography of the suids was again consulted to test the hypothesis that litter

size increased in the suids near the time that the climate changed and the aromatase
gene triplicated. As noted above, peccaries were isolated in the New World in the
Early Oligocene, before the TREX-derived date for the triplication of the aromatase
gene in the Old World pigs. Consistent with the model, the peccary has only 1–2
offspring. The model predicts as well that the peccary should have only a single
aromatase gene.
The molecular biological, fossil, paleoecological, and physiological evidence are all

consistent with a model that proposes that climate changes in Europe at the end of
the Oligocene selected for pigs that had larger litter sizes. The successful lineage
generated a new embryo aromatase by gene duplication, and expressed it at the time
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of implantation, forming the molecular basis of the physiology that enabled large
litter sizes. It is possible to speculate on why a conversion from an open, savannah
like environment to a forested environment might enable larger litter sizes.
Contemporary Savannah babies are large and born with the ability to run,
presumably because hiding is no alternative. In contrast, in a forested environment,
pups are easier to hide, permitting them to be smaller and less precocious at
birth, permitting in turn a larger number of pups for the same total birth
weight. Indeed, the contemporary Sus scrofa sow hides her piglets in earthen hollows
covered with leaves (Eisenberg, 1981).
Implantation is one of the least well understood steps in mammalian reproductive

biology, including human reproductive biology. Implantation is, of course, found
only in mammal reproductive physiology, and is itself therefore a relatively recent
innovation in physiology, emerging perhaps 200 million years ago. This analysis
emphasizes the degree of innovation and experimentation that is continuing in
mammalian reproductive physiology. Further, the analysis is a combination of
computational informatics, geology, paleontology, physiology, molecular biology
and chemistry. Analogous analyses should be applicable in functional genomics
throughout the biological, biomedical and biochemical sciences, especially as
genome projects are completed and as new tools become available to analyze
genomic databases.
But what about the high Ka/Ks values? With Eric Gaucher’s help, we retrieved the

sites that were suffering replacement at the time of the high Ka/Ks values, and
mapped them on to the three-dimensional structure of a homologous P450 enzyme
whose structure had been done. The sites were not distributed randomly in
the structure. Instead, they were found in two regions, the first near the active site,
the second near the site where the P450 enzyme docks to its co-protein. These results
suggested that the substrate specificity of the aromatase was changing during this
episode of evolution. This may be consistent with recent reports that the substrate
specificity of aromatases is indeed different in the different isoforms in pigs (Kao
et al. 2001).

Analysis of the entire genome of a single species

Analysis of the function of individual families is artificial in a very fundamental
way. A protein does not act in a vacuum. If the protein is an enzyme, then its
substrate generally arises from another enzyme, and its product is generally
consumed by another enzyme. As part of a regulatory network, proteins directly
interact with other proteins, as substrates, as their substrates, and without an
associated chemical reactions. Further, through regulatory and metabolic networks,
the performance of a protein can influence proteins that are not in direct physical
contact.
These networks are a key part of the definition of function for a protein. For this

reason, we distinguish between ‘‘functional behavior,’’ something that concerns (and
can be measured for) an individual protein, and ‘‘function’’ itself.
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The goal of an analysis of a single family is to generate as much information as
possible about the interrelationship between a protein family, its members, their
structure, and their behavior. This information then generates inferences and
hypotheses about functional behavior.
Networks and pathways, however, can be identified only through a horizontal

analysis that involves many, and perhaps all, families of proteins represented in the
genome of an organism. As always, hypothesis generation involves correlation. A
completed genome offers a particularly interesting environment within which to
make correlations, however. Here, an evolutionary analysis looks back in time along
the entire lineage that led to the organism.
For the purpose of this discussion, we shall assume that the starting point is a

curated database of the proteome encoded by an organismic genome. The ideal is not
frequently met, especially for higher organisms, and in particular for the human
genome (where the word ‘‘draft’’ clearly applies). Ideally, the curated genome
contains a list of all of the open reading frame that matches the sequence of the
proteins that the genes encode with the sequence of the encoding gene. An
evolutionary analysis of a genome is itself a tool for identifying open reading frames,
of course, so it is possible to iterate the cycle of gene finding, evolutionary analysis,
and then further gene finding.

Paralog Identification

The first step for analyzing a genome begins with a comprehensive identification of
paralogs. This is, in fact, the only thing that can be done from an evolutionary
perspective starting with the genome alone.
When using theMasterCatalog, however, the families have already been found.

Therefore, it is possible to leap over the first step, and to generate directly a set of
nuclear families containing all paralogs, together with all of the homologs that were
identified in other species at the time of the last MasterCatalog build. The process
occurs as follows:
1. Constructing the paralog families
1.1. We first identify in the MasterCatalog all families that contain at least

one member that has the name of the target species as the species descriptor. The
output is a list of MasterCatalog family numbers for sequence modules that
contribute at least one polypeptide segment to one protein in the species proteome
list. We print this list and generate a universally accessible electronic file containing
it. A paralog analysis obviously needs to identify those families that have two or
more members from the target species. We identify all of those that have exactly one
as well, simply because later, we might wish to recover these if the families that
they are in are bridged to other families that contain representatives of the target
species.
1.2. We then recover from the database the full length sequences that correspond

to the proteins in the MasterCatalog family, including those from the target
genome and the non-target genome.
1.3. We then rectify the family of full length proteins
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1.3.1. We remove duplicates from the target genome by comparing the entries in
the MasterCatalog family with entries in the curated species sequence database
(which is treated as the gold standard).
1.3.2. We remove entries from the MasterCatalog families that lack DNA

sequences. Presumably, these do not include any sequences from the target species
genome, but may include protein sequences from other species.
1.3.3. (Optional) Cull the size of all of the families (if the family contains more

than ca. 80 sequences)
1.3.3.1. We may fragment the MasterCatalog family into subfamilies, one that

contains all of the target genome, and one that contains no representatives of the
target genome.
1.3.3.2. If there are fewer than ca. 80 members in the subfamily that contains all of

the members of the target organism, then we use this subfamily.
1.3.3.3. If there are more than 80 members in the subfamily that contains all of the

members of the target organism, then we divide this subfamily into subfamilies with
fewer than 80 sequences, and proceed with separate subfamilies.
1.4. For each family of full length sequences, we create an SGML file.
1.5. We then submit the family of full length sequences to the Darwin server for

an all-against-all comparison. The output, for every family that contains one or more
proteins from the target genome is:
1.5.1. Output: A PAM distance matrix for pairs of proteins in the family.
1.5.2. Output: An f2 matrix for or pairs of proteins in the family.
1.5.3. Output: A multiple sequence alignment, together with a NEXUS file, for

every family.
1.5.4. Output: An evolutionary tree for every family
For the biologist browser, these are printed out in a loose leaf notebook, Book

of the Species. This will become the index to a paper reference resource for
use by those who prefer to browse in hand rather than on the screen (there are
reasons to prefer this, even in the age of computers). The data are also recorded in
an electronic version that is generally accessible as a resource. At the end of the age
of the proteome, we expect these resources to be available for hundreds of
organisms.

Inspection of the Modularization

We next must address the modularization question within the species proteome.
Modularization becomes an issue whenever units of protein sequence are shuffled in
the course of evolutionary history. This happens frequently in the sequences of
higher organisms, as noted above. Therefore, the MasterCatalog will, in some
cases, divide a full length protein sequence into pieces, and place those pieces into
separate MasterCatalog families. Sometimes, in the analysis of a single genome,
we want to keep this division. Sometimes, we do not. The rule is: We want to keep
the division if it reflects actual gene shuffling within the datable history of the target
genome. If, however, it reflects shuffling events that occur before the datable history,
we are not as interested in it.
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In practice, we handle this by looking at the family of proteins from the target
genome. The process conceptually requires us to construct a rooted tree of the
sequences in the MasterCatalog family, and note where the sequences from the
target genome lie. Then we ask, is the sequence that caused the MasterCatalog to
fragment the sequences from the target genome an ‘‘in-group’’ with respect to the
target sequences? Or an outgroup? It is conceivable that the sequence that causes
the modularization of sequences within the target genome lies within the target
genome itself. In this case, the modularization within the MasterCatalog is
retained. On the other hand, if the fragmentation–modularization of the full length
sequence in the target genome is due to a protein that is an outgroup, then we do not
include the modularization.
In this analysis, the power of a second generation naturally organized database is

clear. Modularization is a difficult tool to implement, and cannot be implemented by
any rationale that can be assessed by standard statistical methods. In practice,
modularization must be iterative, and iteration can occur over years as the true
relationship between proteins and their segments is revealed and appreciated.
MasterCatalog is an enormously valuable resource because a first pass
modularization has been completed. It will undoubtedly be revised as civilization
completes more genomes. We may wish to revise the modularization as we continue
with our own analysis of a specific protein or a specific genome. But the Master-

Catalog allows us to begin the day doing biology, not worrying about a first pass
modularization.

Lineage-Specific Resources Created from a Whole Genome Analysis

We next prepare a series of lineage-specific resources from the genome. These are
secondary databases that are used repeatedly in the future analysis of the genome,
making it sensible to pre-compute the information that they contain, and store it.

Lineage-specific Resource 1: A database of rectified pairs of paralogs within the
target proteome. With each is associated a pairwise alignment of both DNA and
protein sequences, a PAM distance (with a variance), an f2 value, and a TREX
distance, and the top line annotation of a set of proteins that are found within the
family within the naturally organized database.

Lineage-specific Resource 2: The pairwise alignment rank ordered in decreasing f2
value.

Lineage-specific Resource 3: A histogram that records the collects of paralogiza-
tion events within the genome in clusters based on the f2 values of the paralog pairs.
The next lineage specific resource involves dating. We have introduced the TREX

dating tool above, and it forms the core of any effort to correlate the molecular
record of a genome with the paleontological and geological record.
Any effort to correlate events in a genomic record with the geological and

paleontological histories requires that we assign dates to points of gene duplication.
This requires some reference to geological dates, which in turn arises from a
combination of radioisotope dating of geological strata, and the association of fossils
with dated strata, with the hope of constraining dates when specific taxa diverged.

S.A. Benner / Advan. Enzyme Regul. 43 (2003) 271–359 341



Because paralogs are created within a single lineage unassociated with speciation,
it is impossible to use paralogs to calibrate clock. Instead, a clock can be calibrated
only by finding orthologous pairs of protein, where the date of divergence of
the two taxa that contain them can be constrained by the fossil record. In the
MasterCatalog, these orthologs are already identified; we need only to extract
them to do the analysis. In principle, the TREX clock can be calibrated at points
along the slice back in time captured in the genome by comparing f2 values for
orthologs that diverged, as far back in time as possible before the silent sites have
equilibrated.
This simple approach is complicated by gene duplication prior to speciation, and

possible gene loss (or incomplete genome sequencing). Together, these processes can
generate paralogs whose true evolutionary relationship is not recognized by analysis
of a tree alone (Fig. 14).
As genomes become completed, the paralog problem can be addressed by plotting

a histogram that collects all interspecies pairs, and fitted a Gaussian curve based on
the number of characters used to calculate the TREX tool. Knowing the number of
characters used to determine f2, we can calculate the shape of the distribution
assuming fluctuation as its only cause. Where this has been done for mammalian
genes, the shape of the distribution is fit well by a binomial distribution for the most
recently diverging genes. This suggested that we need not invoke ‘‘hot spots’’ or
other higher order behaviors to explain the plot.
From these histograms, and a divergence date of the two taxa, a time-invariant

transition rate constant can be estimated. For example, the human and mouse taxa
diverged perhaps 80 MYA. From the average f2 value of the presumed orthologs, a
rate constant for transitions at two fold redundant sites can be estimated to be ca.
3� 10�9 transitions/site/year. This corresponds to a single lineage half-life (t=ln2/
k)E200 million years. Typical sequences generate sufficient characters to get
reasonably accurate TREX dates back three or four half-lives, which correspond to
divergence dates of 300–400 MYA (note that one must halve a single lineage time to
get a date of divergence; half of the time is along one descendent branch, half is along
the other).
The transition rate constant need not be time-invariant, of course. Because the

second generation MasterCatalog reconstruct the sequences of nodes within the tree,
however, we can count the number of substitutions that occurred along any
individual branch of the tree in any kind of site. To the extent that the speciation can
be dated from the fossil record, rate constants for any process (including transitions)
can be calculated for any episode of interest.
Obviously, both the reconstructions, the trees, and the error due to statistical

fluctuations will be improved as additional sequences become available. The
first phase of a lineage specific model is complete when we can place on each
branch of a genome tree the rate constants for pyrimidine–pyrimidine transitions
and purine–purine transitions on individual branches in the target lineage extending
back to the point where so many mutations have occurred that it is no
longer possible to reconstruct events along branches with acceptable levels of
uncertainty.
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Here, the value of reconstructed ancestral sequences is evident. An f2 value can be
calculated for any two extant sequences. A third sequence, which is an outgroup of
the first two sequences, roots the tree holding the first two sequences. The DNA and
protein sequences (probabilistic) at this root are then reconstructed. Now, an f2 value
(and the corresponding TREX distance) can be calculated between the ancestor and
the third sequence.
This approach permits calculation of 12 rate constants for all 12 processes at

silent sites (Fig. 15). This calculation can be supplemented with calculations at non-
coding sites other than silent sites, including sites in introns and putative
pseudogenes.
The model assumes that the transition rate constant is independent of location on

the gene. This has proven to be the case (within statistical error) in the vertebrate
genomes that we have examined so far. It may or may not be true in the history of
the target species genome. Part of the assessment of the lineage-specific model for
molecular evolution includes a genome-wide assessment of the variation of rate
constants within the genome (Morozov et al., 2000). For each family, the behavior of
silent sites in coding regions will be compared with the norm and the associated
variance.
A similar analysis will permit us to understand the characteristics of processes that

insert and delete gene segments during divergent evolution in the specific lineage that
contains the target. We showed nearly a decade ago that a ‘‘penalty plus increment’’
formula does not accurately describe accepted indels in the general protein (Benner
et al., 1993). These processes are sequence-dependent, and taxon-dependent. Again,
the reconstructed ancestral sequences permit us to trace the history of indel events
going back in time.

Lineage-specific Resource 4: A set of parameters for fundamental rates of events in
the target genome.

(a) A composite rate constant kY for pyrimidine–pyrimidine transitions in the target
lineage, assuming time invariance.

(b) A composite rate constant kR for purine–purine transitions in the target lineage,
assuming time invariance.

(c) A set of 12 rate constants describing all silent point mutation in the target
genome, again assuming time invariance.

Fig. 15. Transitions and transversions in nucleotide replacement. No two arrows need have the same rate

constant. See Gojobori et al. (1982). One goal of a whole genome analysis seeks to determine the history of

all of these rate constants through the analysis of the planetary genome.
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(d) Empirical parameters describing the rate insertion, deletion, gene duplication,
and gene loss in the target lineage.

(e) The same as (a)–(d), but estimated for individual branches of the evolutionary
tree, based on reconstructed evolutionary sequences. The degree of detail in this
lineage-specific model depends on the availability of orthologs.

(f) Rate ratio tested parameters as described above.
(g) The set of trees, MSAs, and ancestral sequences for the families of proteins that

are represented in the target genome, from which these parameters are
calculated.

Together, these constitute a model for microscopic processes at the DNA level
for the history of the target lineage. With whole genome analysis, therefore,
we no longer must calibrate clocks on a single gene family, and hope that the
variance is acceptable. We need not blindly assume time invariance. We can test
whether time invariance holds and, if it does not, adjust the models to compensate
for this.
The results of this analysis will be estimates for chronological dates for all nodes in

all families containing target representatives, based on models that reflect rate
constants (including variation in these) for transitions, supported by models for all
other change processes at the level of the DNA molecule, with estimation for how
these processes changed in specific lineages over specific periods of time.
At this time, this particular resource cannot be found in any existing public

database. As the age of the genome progresses, databases capturing these features of
the history of the basic processes of evolution, insertion, deletion, and mutation, will
accumulate for hundreds of slices back in time. These will be a key to interpretive
proteomics research for the next century.

Searching for Temporal Correlation in the Historical Record of a Lineage. Pathway

and Network Hypotheses

Defining the interaction between proteins is very much part of defining the
function of a protein. It is possible to give an enzyme a name based on the reaction
that it catalyzes. This is the strategy behind the Enzyme Commission nomenclature
for proteins, for example. But while most of mechanistic enzymology is based on this
simple characterization of behavior of a protein, an understanding of how this
reaction contributes to fitness (which is, from a Darwinian perspective, the only
correct definition of ‘‘function’’) requires much more. This includes identifying other
enzymes that provide the substrate(s) and consume the product(s) of the enzyme of
interest, of course, as well as the enzymes that produce their substrates and consume
their products.
Chemical theory is far from being able to calculate from first principles what

substrate an enzyme binds, what reactions it catalyzes, and what product it produces.
This is true even if a crystal structure of the enzyme, at an ultra-high resolution, is
available. Computational biologists, therefore, cannot begin to identify metabolic
pathways.
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An evolutionary analysis based on the lineage-specific resources outlined above
suggests a pass around the limitations of conventional chemical analysis. Specifically,
the rank ordering of duplications in the history of a genome permits us to say which
duplications occurred at approximately the same time.
When two duplications occurred at the same time, the time correlation of the

duplications is consistent with the notion that the two duplications events are related
functionally, and this in turn implies that at least one of the duplicates from one
family interacts with at least one of the duplicates from the other.
These are, of course, ‘‘soft hypotheses’’. Time correlation of events is not

expected in the history of two proteins that do not interact as they function. It may
occur in these nevertheless, by random chance, of course. Therefore, the existence of
time correlation of two events in the historical record of a genome is not sufficient
reason to conclude that there is a functional relationship. This is, of course, a
statement that applies equally throughout human inference, including in areas
outside of genetics. Post hoc need not imply propter hoc, as every student of logic
learns.
This does not mean, however, that temporal correlation is useful as a tool of

inference, either in genetics or in general. A genome that contains n genes has on the
order of n2 possible pairwise interactions. It holds an astronomically larger number
of higher order interactions. Any tool that identifies, even at the level of a soft
hypothesis, a limited number of these, can focus the experimentalist on a set of these.
This is extraordinarily useful in post-genomic science.
Lineage-specific Resources 2 and 3 are remarkably useful when analyzing the

origin of new pathways that involve gene duplication. In principle, when two
proteins suffer duplication near the same time, this observation immediately suggests
the hypothesis that these two proteins interact.

Example: Identifying Pathways and Networks Within the Yeast Genome

The most compelling demonstration of second generation tools and databases
over first generation tools comes by comparing the results of their implementation.
Nowhere is this demonstration more dramatic than in the analysis of the yeast
genome. The yeast genome has been the subject of numerous analyses ever since it
was released (Lynch and Conery, 2000). These all used first generation tools. These
were capable of identifying crude features of the molecular history of the yeast
lineage, including past large-scale duplication events. But none of them captured the
second level signals, all of which held biological insights.
The resources detailed above were created for the S. cerevisiae genome, which

encodes ca. 6000 proteins. Fig. 16a shows a histogram that emerges when the gene
duplications are clustered based on their f2 value. Fig. 16b shows the histogram
created by Lynch and Conery (2000) attempting the same cluster using first-
generation tools, here, a ‘‘statistician approved’’ method for counting the number of
mutations per silent site.
The first obvious feature in both histograms is the large number of duplications

that occurred recently, represented by the bars on the right side of our histogram
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(Fig. 16a) and the classical histogram (Fig. 16b). Differing in the two histograms is
the evident presentation in ours of a large number of duplications occurring in the
past, where silent substitutions have equilibrated (hump near f2E0.5). The classical
histogram does not transparently indicate regions where stochastic models provide
uncertain answers, although this is clearly the case after 5 mutations have occurred in
a single site.
Also present in the second generation histogram, but missing in the classical

histogram, is a prominent episode of gene duplication at f2 near 0.84. This
corresponded to duplication events that occurredB80 Ma, based on a calibration of
the clock using fungal fossils (Berbee and Taylor, 1993). This generated a hypothesis,
that protein families generating these duplications interact functionally.
Because so much is known about the yeast genome, it was possible to evaluate this

hypothesis. These particular duplications created several new sugar transporters, two
new glyceraldehyde-3-phosphate dehydrogenases, the non-oxidative pyruvate
decarboxylase that generates acetaldehyde from pyruvate, a transporter for the
thiamine vitamin that is used by this enzyme, and two alcohol dehydrogenases that
interconvert acetaldehyde and alcohol.
This is not a random collection of proteins. Rather these proteins all belong to the

pathway that yeast uses to ferment glucose to alcohol (Fig. 17). Correlating the times
of duplication of genes in the yeast genome using the TREX method has identified a
pathway.
Dating allows us to add geological and paleontological records to the analysis. By

doing so, these pathways assume additional biological meaning. Fossils suggest that
fermentable fruits also became prominent B80 Ma, in the Cretaceous, during the
age of the dinosaurs (Dilcher, 2000). Indeed, over-grazing by dinosaurs may explain
why flowering plants flourished (Bakker, 1978; Barrett, 2001). Other genomes also

Fig. 16. (a) Histogram showing distribution of duplications in S. cerevisiae using the f2/TREX metric and

(b) the Li (1985) silent substitution metric (from Lynch and Conery 2000)). In (a), the most recent

duplications are at the right. In (b) histogram, the most recent duplications are at the left. The f2 metric (a)

shows an episode of recent gene duplication, and an episode at f2E0.84 (first major island of duplication

to the left) that corresponds to events occurring ca. 80 MYA. The time correlation between approximately

simultaneous events occurring in a single genome permits the assignment of pathways and networks from

genome sequences (see Fig. 17).
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record episodes of duplication near this time, including those of angiosperms (which
create the fruit) and fruit flies (whose larvae eat the yeast growing in fermenting fruit)
(Ashburner, 1998; Pereira, 1995).
Thus, time-correlation between the three records connected by approach-to-

equilibrium dates generates a planetary hypothesis about function of individual
proteins in yeast, one that goes beyond a statement about a behavior (‘‘this protein
oxidizes alcoholy’’) and a pathway (‘‘yacting with pyruvate decarboxylasey’’) to
a statement about planetary function (‘‘yallowing yeast to exploit a resource, fruits,
that became available B80 Ma’’). This level of sophistication in the annotation of a
gene sequence is difficult to create in any other way.
We know of no other approach that can generate this level of functional insight, or

capture pathways and regulatory networks as effectively. In particular, the
approach-to-equilibrium dating tools can be more effective at inferring possible
pathways from sequence data than approaches developed within other programs
(Marcotte et al., 1999a, 1999b; Pazos and Valencia, 2001). Neither of these
alternative tools captures dates, chemical, or paleontological information as
effectively as the TRATE tool supported by a second generation naturally organized
database such as the MasterCatalog.
Two yeast genome contains other illustration of the power of second generation

strategies, especially when compared with conventional approaches. Consider the
conventional histogram in Fig. 16b (from Lynch and Conery, 2000). Here,
duplications in the yeast genome were dated using the conventional Ks metric (Li
et al., 1985; Li, 1993). The conventional metric is adequate only to note that
duplications do indeed occur, and that many are recent, and to suggest a rate for
duplicate loss. Lynch and Conery (2000) interpreted this as random duplications that
created redundancies that had not yet been removed by random loss. These
conclusions remain controversial, in part because of criticism of the silent
substitution metric to rank-order events in the genome (Long and Thornton, 2001;
Zhang et al., 2001).

Fig. 17. The metabolic pathway identified by contemporaneous events in the history of yeast, as found

using second generation tools for dating paralogization events in the genome. Genes in red (underlined)

are duplicated in the historical event represented by the peak at f2=0.84 in the histogram in Fig. 16.
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Second generation analyses suggested an alternative interpretation. All of the
recent duplication events in the yeast genome fall into three metabolic categories:
(a) genes that allow yeast to divide more rapidly, (b) genes that allow yeast to
synthesize proteins more rapidly, and (c) genes that allow yeast to ferment malt
(Benner et al., 2002). This is not a signature of random gene duplication, with the
randomly created duplicates present in the yeast genome only because insufficient
time has passed since they were created for them to be lost as functionless
redundancies.
More plausible is the hypothesis that contact with humans has offered yeast a

relatively rich environment to grow, far richer than the environment encountered by
yeast in the wild (where few feasts are interspersed with long famines). The
hypothesis is therefore more compelling that we are observing in the genome of yeast
the record of its interaction with humans in the most recent episode of gene
duplication, just as we are observing the record of yeast’s acquaintance with
angiosperms in the episode of gene duplication where f2=0.84.

Example: Identifying Pathways and Networks within Mammalian Genomes

These results show how second generation dating tools, evolutionary models,
and interpretive strategies address problems that are not addressed with first
generation tools. Within yeast, so much is known that hypotheses are rapidly
validated.
Within mammalian genomes, hypotheses drawn using a Firebird analysis can

remain hypotheses longer, guiding biomedical researchers in the selection of Targets.
Fig. 18 illustrates one example. Here, inspection of the STAT family within the
MasterCatalog resource identifies a gene duplication in the mouse genome
occurring since the divergence of mouse and rat. Because of the power of the Mas-

terCatalog as a second generation naturally organized database, this inspection is
possible by a browser with one click of a mouse button; the biologist need not to first
make a commitment to investigate the STAT family, suffer through BLAST
searches, and build his/her own evolutionary models before the first biological
information returns as feedback.
This approach is useful for non-directed discovery. For example, once one notices

the duplication in the STAT family, one can search the mouse genome for
duplications occurring near the same time. Fig. 18 shows that this is in fact the case
in the JAK family. As JAK and STAT interact in a regulatory networks generally,
one generates the hypothesis that this particular JAK and this particular STAT are
involved in the same regulatory pathway.
But which JAK is involved with which STAT? Again, the Firebird strategy

generates a working hypothesis. Inspection of the pre-computed trees within the
MasterCatalog for each of the branches leading from the ancestral JAKs and
STATs, one notices that one JAK and one STAT in mouse lie at the ends of
branches with particularly high Ka/Ks ratios. The working hypothesis is that this
particular JAK and this particular STAT work together in a new pathway that
emerged in the last 10 million years. This hypothesis is exactly the type of hypothesis
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that biological scientists would like to extract from a contemporary genome
database.

Example: Paralogization within the Human Genome during the Oligocene

The human genome is still in draft form, and it is clear that all of the human
proteome has not yet been identified. Yet the human paralog histogram, Resource 3
from above, offers functional hypotheses. With many more genes, no isolated
episodes of duplication were observed in the human histogram. We were nevertheless
able to select interesting episodes based on what we know about the paleontology
and paleoecology of mammals (Eisenberg, 1981), and the transition rate constant
calculated from the inter-species comparisons discussed above. In particular, we
knew that ca. 40–35 MYA, the Earth suffered an episode of global cooling (the
average temperature dropped perhaps 151C) (Wolfe, 1978; Prothero, 1994).
We knew that this dramatic cooling had repercussions throughout the biosphere.

Grasses emerged for the first time, adapted to survive in the newly formed savannahs

Fig. 18. (a) The tree showing divergence of two mouse paralogs within the STAT family. The numbers on

the branches are Ka/Ks ratios. Note the duplication at the bottom of the tree of mouse paralogs, where one

of the paralogs has a Ka/Ks ratio of 0.802. This is insufficient to compel the conclusion that adaptive

evolution has occurred along the branch, but is suggestive, as this ratio is higher than ratios elsewhere in

the tree. This screenshot from the MasterCatalog shows color, not captured here. (b) The same tree, but

showing GenBank gi numbers (instead of species names) as labels on the leaves of the trees, and PAM

distances as the numbers on the trees. (c) A portion of the JAK tree showing paralogization (duplication)

in the mouse lineage after the divergence in rat, where the JAK duplication is associated with the same

TREX date as the STAT duplication. The numbers on the branches are Ka/Ks ratios. The hypothesis

emerging from this Firebird analysis correlates specific JAK kinases with specific STATs, suggesting a

regulatory network that is now open to experimental test.
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that replaced tropical rain forests throughout much of the temperate zone.
Artiodactyls responded with a spate of gene duplication and rapid evolution at
this time leading to the emergence of ruminant digestion (Rose, 1982; Jermann,
1995). Indeed, a set of experiments in paleobiochemistry, illustrated in Fig. 19, traced

Fig. 18 (continued).
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molecular change in individual proteins in the ruminant digestive system all of the
way to the planetary environment.
Explicit reconstructions of evolutionary intermediates assign specific amino acid

replacements to specific episodes in the history of a protein family. In ancestral
lysozyme genes, for example, rapid sequence evolution occurred as ruminant and
ruminant-like digestion emerged (Messier and Stewart, 1997). Rapid change in the
sequence of a lysozyme implies rapid change in the behavior of lysozyme, which in
turn suggests a change in its functional behavior. This hypothesis is inferential, of
course, but can be tested. Further, it makes sense in light of a historical model. New
lysozymes are expected to emerge to break open bacterial cells in the new ruminant
digestion.
The microbial communities within the rumen must have responded as well. It will

be interesting to learn whether this response has been captured in their genomes. We
expect that it should, and it should be well within the dating range, even if transitions
are much faster in microbes than in their hosts.
How did primates respond to this global cooling? To answer this question, we

examined duplication events that generated paralogs separated by an f2E0.91. A
total of 22 gene families that suffered duplication during the Oligocene cooling. Over
half of these are not annotated. Remarkably, all of the genes that are annotated
might be interpreted as being involved in neurological development (Table 11), either
directly or conceivably.

Fig. 19. An evolutionary tree relating ribonucleases responsible for the digestion of nucleic acid from

bacteria fermenting grass in the first stomach of ruminants. Experimental analysis of reconstructed

ancestral proteins suggests that digestive-like behavior in the protein arose near the time that its putative

role in digestion in ruminants arose, near the time when grasses arose in response to the global climatic

upheaval known as the Oligocene cooling.
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Especially interesting are the recently discovered protocadherins, proteins
involved in the patterning of neural networks. These suffered frequent duplication
in the evolution of human biology in the Oligocene. Also generating paralogs are
serine kinases associated with X-linked mental retardation, and a kinase associated
with Down syndrome.
Ruminants responded to the global crisis associated with the Oligocene cooling by

learning to eat grass. Did primates respond to the Oligocene cooling by becoming
more intelligent by altering their central nervous systems? This is clearly a
hypothesis, but clearly one with significance that ranges from biomedicine to the
planet. The example serves to illustrate how the Firebird analysis supported by the
MasterCatalog helps generate hypotheses that are inaccessible to any current
publicly available tool, and far beyond the potential of methods constrained by
statistical formalisms.

Lineage-specific Resource 5: A matrix of interconnections between protein families
containing representatives of the Arabidopsis proteome that hypothetically interact
when they function, based on the evolutionary history of the family (contempora-
neous duplications, episodes of putative functional conservation, episodes of
putative functional change). These networks, based on time-correlation, will indicate
hypothetical pathways in which members of individual families function together.

Interspecies Genome Comparisons

Just as it is artificial to examine the evolutionary history of a single protein family,
so is it artificial to examine the genome of a single species. Species interact with other
species as they struggle to survive and reproduce. While the analysis is beyond the
scope of this review, it is clear that the events recorded in the yeast genome as it
evolves to ferment fermentable fruit are correlated with events that are recorded in
the genomes of the fruit-bearing plants. At the same time, fruit flies evolved to fill
this new niche in the planetary biosphere have evolved, and this response will be
captured within the fly genome.

Summary

The paleontological, geological, and molecular records of life on Earth can be
joined to obtain a comprehensive model for the proteins that are found throughout

Table 11

Some genes duplicated in the human genome at the time of the great Oligocene cooling

gp.24532 protocadherin 68, neuronal network patterning (Hilschmann et al., 2001)

gp.24558 protocadherin 43, neuronal network patterning (Hilschmann et al., 2001)

gp.13983 serine kinase PAK homolog, mental retardation (Blanco et al., 2000, Allen et al, 1998)

gp.16242 MNB protein kinase; Down syndrome (Kentrup et al, 2000)

gp.28010 desmolase, conceivably involved in neurosteroid biosynthesis (?)

gp.21865 butyrophilin, a possible neurosteroid receptor (?)
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the life on the planet (Benner et al., 2002). Individual models for ca. 100,000 nuclear
families of protein sequences have been collected in the MasterCatalog, a
commercial naturally organized database developed in collaboration with EraGen
Biosciences (Madison, WI). TheMasterCatalog facilitates interpretive proteomics
by providing the user with high quality, pre-computed, second generation models for
the evolutionary history of all of the protein families in the known biosphere. These
models are advanced over those offered by first generation evolutionary databases
(such as those presented by Pfam, TIGRfam, and Hovergen) in several ways,
including its focus on nuclear families, extensive identification of modules that
undergo independent evolution, and the use throughout of explicitly reconstructed
sequences from ancestral proteins that were present in now-extinct species. This
second generation database is combined with a set of powerful interpretive
proteomics tools that make up the Firebird (Functional Inference from
Reconstructed Evolutionary Biology) strategy for moving from genomes to biology.
The Firebird suite of tools offers a powerful framework for analyzing function in
proteins, identifying targets of biomedical interest, and guiding pre-clinical drug
development in animal models, inter alia. When applied to whole genomes, the suite
identifies metabolic pathways and regulatory networks, permits the correlation of
the life history of a lineage with its historical past, and captures interconnections that
will move the biomedical researcher and biological chemist from the genome to
organismic biology, ecosystems, and the planet.
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