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INTRODUCTION
Conformational analysis in peptide chemistry presents two historically
significant problems: (a) Can polypeptide sequences be routinely designed
to fold in solution to yield a predicted tertiary structure? (b) Can the
tertiary structure of a natural polypeptide sequence be predicted from
sequence data? With the first problem rapidly approaching solution (D
it is appropriate to focus on the second.

We use the term “conformational analysis” to remind the reader that
the “protein folding problem” is a special case of a topic common in organic
chemistry: how constitution determines conformation. In view of this fact,
it might be surprising that the field is dominated by crystallographers,
molecular biologists, physical chemists, and computational chemists; few
organic chemists can be found doing research on the “protein foiding
problem”.

In part, the absence of organic chemists reflects their accurate
appreciation of the magnitude of the problem. Virtually every organic
chemist deals with organic reactivity where conformation plays a central
role. However, organic molecules routinely refuse to behave as predicted,
and a poor understanding of their conformation in solution is often the
reason why.

There is no theory that allows the chemist to predict the conformation
of any organic molecule in solution. This is true even for molecules much
smaller than normal proteins. Computational methods for making these
predictions are improving; optimistically (and perhaps naively} given
enough computer time, such methods might ultimately be satisfactory for
predicting the conformation in solution of all molecules, including proteins.
However, at present, the best computational programs do respectable jobs
only in solvents similar to a vacuum, and there only with small molecules.
Conformational analysis in a solvent that interacts strongly with the solute
(water being a good example) is far more difficult. For organic chemists
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it makes sense to say, “Let’s solve the conformation problem with small
molecules first; then we can worry about proteins.”

This prelude is intended to convey one view of chemical reality to those
interested in protein folding. The commonly stated goals: a “code” for
protein folding (analogous to the genetic code); patterns in sequences that
indicate with reliability a specific secondary structure; a “meta-language”
that permits the analysis of protein folded forms without recourse to
analysis at the level of atoms, bonds, and orbitals; or a distributable .
computer program that will allow the novice to extract information useful
for predicting tertiary structure from sequence data, all may someday be
attained. However, realistically, such goals have not been achieved in any
branch of organic chemistry in the past.

Realism need not be discouraging. Individuals can acquire the ability
to predict the behavior of molecules to a degree sufficient to manipulate
them for practical ends. This ability in an organic chemist comes from
training and experience, creating an “intuition” (a single word meaning
“training and experience”) about organic reactivity. Further, an organic
chemist is trained to analyze from many theoretical perspectives a problem
in reactivity concerning a single molecule. First, he considers steric aspects,
then perhaps electronic aspects, then perhaps acid-base properties. With
each pass, he deepens his understanding of the molecule.

Finally, there is one opportunity for the conformational analysis
of biclogical macromolecules that is not available in normal organic
molecules. Proteins are the products of evolutionary processes, and are
often present in the natural world in a variety of forms. With recent
advances in purification and sequencing, it is now far easier to collect
constitutional information on macromolecules than it is to determine their
conformation by crystallography. Our understanding of how proteins evolve
is also growing rapidly. This understanding together with sequence data are
already providing much information useful for tackling the protein folding
problem.

We develop here themes that incorporate both considerations. These
themes constitute a partial solution to the protein folding problem. The
reader should not expect this discussion to be uncomplicated, or our
approach to be simple; after all, nothing in organic chemistry is simple or
uncomplicated. However, by examinations of many proteins, from many
theoretical points of view, and with an eye towards evolutionary processes,
progress can be made.

WHAT WE CANLEARNFROM CHEMISTRY
Those who synthesize peptides routinely experience solubility problems.
Many synthetic peptides are intractable because they precipitate. A peptide
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that precipitates is a peptide that prefers interactions with other peptide
units over interactions with solvent. Of course, interactions with other
peptide units (in preference to interactions with solvent) are simply folding
interactions. The general insolubility of peptides suggests that there is
abundant opportunity for peptides to fold with immense conformational
stability. The fact that most proteins from thermostable organisms are quite
conformationally stable has long been recognized as another manifestation
of this same principle.

This is one reason why progress in the design of peptides that fold
in agueous solution is faster than in the prediction of conformation of
natural peptides from their sequences. Indeed, the most important problem
in design is to obtain a sufficiently soluble peptide for n.m.r. analysis to
prove conformation. However, in predicting the conformation of natural
polypeptides whose conformational stability is usually rather low, this fact
creates a problem. It indicates that there will be few constitutional features
(i.e., sequences) that are essential for conformational stability. Given an
excess of opportunities for conformationally stabilizing interactions, some
can be absent in some proteins, and others in other proteins, and still have
proteins that fold.

This point is important, as much effort has recently been devoted
to identifying structural features that are necessary for the formation of
particular secondary structures. For example, a recent hypothesis is that
side chains capable of forming hydrogen bonds to amide groups at the
end of helices are a necessary condition for helix formation (2). While
such efforts should be encouraged given the possibility that they might
lead to discoveries, they are unlikely to be successful in the manner
envisioned. Amphiphilicity, or hydrogen bonding patterns, or electrostatic
interactions, or polarity in the environment, each appear sufficient to induce
helix formation in model peptides in solution. A helix that has all of these
structures is very stable indeed. Thus, it is unlikely that one of these factors
will be found to be a necessary condition for helix formation in natural
proteins.

WHAT WE CANLEARNFROM BIOLOGY

In the past five years, our understanding of the role of natural
selection in determining the properties of proteins has grown enormously.
This subject is reviewed at length elsewhere (3-6). In most cases we are now
able to distinguish between macromolecular behavior that is adaptive (i.e.,
influences the survival of a host organism) from behavior that is neutral.
This distinction is critical, as adaptive and neutral traits in proteins behave
differently during divergent evolution. Neutral traits drift randomly, and
structural aspects of a protein that determine neutral behaviors alone are
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unconstrained from drifting. However, structures that influence adaptive
traits (function) do not drift; the function is said to “constrain” drift.
However, protein sequences can diverge for adaptive reasons. Different
proteins in different environments need different structures to be optimally
suited to assist efforts of the host organism to survive.

An understanding of evolution in proteins can assist the study of
folding in several ways. First, tertiary structure diverges far slower than
primary structure. This has been shown best in the elegant investigations
of Chothia and Lesk, where 75% divergence in sequence leads to less
than 2 A rms divergence in backbone positions (7). This means that in
predicting tertiary structures at this resolution, it is relevant to examine
the sequences of many homologous proteins, even if their sequences have
diverged substantially. Thornton, Blundell and their colleagues have made
use of this fact to extrapolate the structures of proteins when the tertiary
structure of one of its homologs is already known by crystallography (8).

However, an understanding of divergence in function can, on occasion,
help build a picture of a protein with unknown tertiary structure. For
example, if, in a series of homologous proteins, adaptation requires different
catalytic behaviors in different proteins, structural differences are expected
to reflect this. Asisillustrated below, this permits the deduction of a piece of
information concerning which parts of the primary structure come together
to form the active site. : _

However, the most important outcome of studies on adaptation -and
drift in proteins is a full appreciation that conformational instability in
proteins is an evolutionarily desirable behavior. Conformational instability
in a protein is believed to be important for protein turnover, and instability
appears to be engineered into proteins to give them a desirable lifetime
in vivo. Much evidence supports this statement. In many cases, inducible
proteins (those which are designed to be recycled more frequently under
physiological conditions) often have lower thermal stability than constitutive
proteins (9). Further, it is quite easy to create a mutant protein that is more
stable by introducing a point mutation into a protein. This argues strongly
that natural selection does not maximize stability (6).

The implications of this are disappointing to those attempting to predict
tertiary structure from primary structure. Opportunities for conformational
stabilization are abundant (vide supra), meaning that proteins do not need to
use them all to form a stable tertiary structure. But also it is clear that natural
selection does not want to form a very stable tertiary structure. Enzymes
that have evolved to have low conformational stability will use only a small
subset of the stabilizing interactions possible. Indeed, selective forces might
produce proteins that introduce destabilizing interactions, simply to achieve
the desired level of instability in the protein.

Thus, even if rules can be deduced that connect primary and tertiary
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structure, biological systems will have evolved to violate them a certain
fraction of the time to achieve proteins with the desired level of instability.
This implies that the sequence of a single protein will contain pitfalls,
elements in the sequence that will deceive the chemist setting out to predict
conformation, even one who thoroughly understands the rules that connect
constitution and conformation.

WHAT WE CAN LEARN FROM ALIGNMENTS OF
HOMOLQOGOUS SEQUENCES

The simplest approach to solving this last problem is to examine
alignments of many sequences of homologous proteins. As mentioned
above, each protein in such a collection will have approximately the same
tertiary structure. While no single structural feature is necessary for forming
a particular secondary structure, and while every rule can be violated in
a protein’s search for instability, there does not appear to be selective
pressure to determine which particular destabilizing interactions will be
incorporated. Thus, destabilizing interactions are expected to drift during
divergent evolution. An “average” over many sequences might therefore
filter out the destabilizing “noise”. '

This approach has been suggested in its general form by many others
seeking to improve the success of statistical methods for secondary
structure prediction. For example, Chou-Fasman parameters successfully
predict secondary structure only about 60-70% of the time. However, by
“gveraging” these parameters over a set of homologous structures, the hope
has been to improve structural predictions. This hope has been realized in at
least one case. When averaging of statistical parameters was combined with
other considerations, Kirschner and his co-workers successfully predicted
the tertiary structure of tryptophan synthetase (10).

However, much more information can be obtained from an alignment
of sequences if we use a different type of analysis (11). Information about
tertiary structure is contained in the patfern of sequence divergence in
homologous proteins. The sequence divergence in a proteinis a combination
of adaptive variation and neutral drift. Because the impact on behavior of
these two types of primary structural variation is intended to be different,
their tertiary structural implications are different.

Neutral variation must (by definition) have no impact on any selectable
behavior of a protein. Evidence discussed elsewhere (3-6) shows that most
behaviors are selectable, even very subtle ones. Thus, neutral variation
can only occur in limited regions of a protein. In normal catalytic proteins
(although not in binding proteins), neutral variation is generally found on the
surface of the protein. This statement must be qualificd. As the sequences of
two proteins diverge, neutral variation need no longer occur simply on the
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surface. Compensating changes are conceivable {and in fact are observed)
where several changes together have no impact on behavior, but where the
changes individually do. Thus, as the sequences of two proteins drift apart,
neutral variation moves from the surface into the protein (Fig. 1).

In contrast, adaptive variation must perturb the behavior of a protein.
In the case of an enzyme, adaptive variation alters the kinetic, physical,
or other catalytic properties to suit a particular substrate or a particular
environment. Thus, adaptive variation can occur essentially anywhere in
a protein; often it is seen at or near the active site. '

This suggests an approach for detecting surface residues in a set
of homologous proteins with unknown tertiary structure, provided that
adaptive variation can be distinguished from neutral variation. We illustrate
this procedure with alcohol dehydrogenases (EC 1.1.1.1). These proteins
form an especially challenging prediction problem for several reasons.
First, the alcohol dehydrogenase structure is “irregular” (for exampie,
in comparison with beta-barrels). Second, there has been a considerable
amount of adaptive variation superimposed on neutral drift. In glycolytic
enzymes (e.g., triose phosphate isomers) prediction is easier, as the exact
substrate has been conserved, suggesting that a higher proportion of the
structural variation that is observed is neutral.
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FIG. 1. A generalized picture of the positions of neutral variation in a protein, relative to
the active center, in proteins with different overall sequence identity. As sequences diverge,

neutral variation can move in towards the active center, due to the presence of increasing
possibility for compensating mutations.
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THE ALIGNMENT

To illustrate how information about tertiary structure can be extracted
from the patterns of sequence divergence in a set of homologous proteins,
we consider an alignment of 17 alcohol dehydrogenase sequences (the
“master alignment”). Eight are from mammals, four from plants, and
five from fungi. A table of the pairwise sequence identities is shown in
Table 1.

Subgroups of this alignment are chosen for analysis. A group can be
characterized by a “minimum pairwise identity” (MPI) value, which is
simply the percentage identity shared by the two proteins in the group
that are the least similar. For example, the MPI for the total alignment
of 17 proteins is 21%. Alternatively, a group can be characterized by the
percentage of residues that are “absolutely positively conserved” (APC)
throughout the alignment. Clearly, the APC value is always less than or
equal to the MPI value. The lower the values are for the group, the greater
the sequence divergence within the group.

TABLE 1. PAIRWISE IDENTITIES IN ALIGNMENT OF
ALCOHOL DEHYDROGENASES

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0g* B8 B7 88 64 85 82 53 53 48 53 24 24 24 24 25
2 88 87 88 64 85 83 52 53 48 52 25 24 24 24 25
3 94 93 63 84 82 52 52 48 52 26 26 26 25 26
4 95 63 84 83 52 52 49 52 26 26 27 26 127
5 62 8 83 51 52 48 51 26 26 26 26 26
6 60 60 51 52 50 52 24 21 21 22 24
7 90 51 51 48 51 26 26 26 26 26
8 51 51 48 51 26 26 26 26 25
9 g7 83 81 23 22 21 22 23
10 83 81 24 23 23 24 24
11 87 24 23 23 24 25
12 23 22 22 24 24
13 ) 58 59 58 55
14 93 80 356
15 81 56
16 ) 53
*Percent sequence identity.
Key: 1 Horseliver E. 10 Maize chain 2.

2 Horse liver 8. 11 Pea.

3 Human class 1, alpha chain. 12 Arabidopsis.

4 Human class 1, beta chain. 13 Aspergillus nidulans.

5 Human class 1, gamma chain. = 14 Seccharomyces cerivisige 1.

6 Human class 2. 15 Saccharomyces cerivisiae 2.

7 Mouse. 16 Saccharomyces cerivisiae 3.

8§ Rat. : 17 Schizosaccharomyces pombe.

9 Maize chain 1.
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THE COMPUTER PROGRAMS
The operations that are described below are best executed by computer.
Programs were run on an IBM-AT, on a hand-entered alignment. We
emphasize that the computer programs used here are only tools to assist
the chemist in manipulating data; they do not predict tertiary structure
directly.

DETECTION OF SURFACE RESIDUES

As mentioned above, neutral variation is expected to occur most often at
positions where the side chain protrudes into solvent. Thus, surface residues
are likely to display high variability; conversely, one might like to develop a
procedure that identifies positions in an alignment that are observed to be
highly variable, and then assign those positions to the surface of a protein
with unknown structure.

However, variability can occur inside the protein and still be “neutral”
in terms of its impact on selectable behavior in the protein, once proteins
have diverged sufficiently so that compensating changes can be incorporated
into the structure (vide supra). Thus, only in proteins that are otherwise
highly similar in sequence will neutral variation be confined primarily to
the surface.

Of course, variability even in highly homologous proteins cannot itself
infallibly predict surface residues. Variability observed at least in some
positions in an alignment is undoubtedly adaptive, and adaptive variation
can occur anywhere in the folded structure. Therefore, any algorithm that
assigns residues to the surface of a protein, based on their variability in
proteins with high sequence homology, must first “filter” the variability to
remove the part that is adaptive.

To solve the first problem, we look for variability within subgroups of
the master alignment where the MPI of each subgroup is greater than 85%.
Thus, any variability that we detect is variability between two proteins that
are otherwise highly similar. This implies (the implication to be tested by
examination of actual data) that the neutral variation that is detected will
be on the surface of the protein. This number is not absolute. Lower values
will identify more residues as being on the surface, but with a greater risk
that the identification will be in error. Higher values will provide more
secure identification of surface residues, but at the expense of overlooking
a higher fraction of the residues actually on the surface.

To filter out adaptive variation, we assign significance to variability
only if it appears at a particular position in more than one subgroup.
The rationale for this “filter” is simple. Variability at position X in
subgroup 1 may be adaptive; the two proteins in subgroup 1 might
perform slightly different functions in slightly different environments,
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and variation at position X might be needed to create two proteins
optimized for two different functions. However, it is uniikely that the
same position will be altered adaptively in subgroup 2. Thus, by assuming
that the variation at position X is neutral only if variation at this position
is observed in another subgroup should filter out variation that is adaptive
(at the expense of filtering out some variation that truly identifies surface
residues).

Five subgroups from the master alignment were selected: Subgroup
1 (mammalian Adh No. 1, proteins, 1, 2, 3, 4 and 5) has an MPI of
87%. Subgroup 2 (mammalian Adh No. 2, proteins 7 and 8) has an
MPI of 90%. Subgroup 3 (plant Adh No. 1, proteins 9 and 10) has an
MPI of 87%. Subgroup 4 (plant Adh No. 2, proteins 11 and 12) has an
MPI of 87%. Subgroup 5 (yeast Adh, proteins 14 and 15) has an MPT of
93%. Thus, the sequences of the proteins within each subgroup are quite
similar. :

The computer then searched for positions in the alignment where
variability was observed in two or more of these subgroups. Fifty-three
residues were identified, corresponding to 14% of the total sequence.
These were divided into 8§ classes, depending on the nature of the variability
(Table 2).

TABLE 2. POSITIONS IN THE ALIGNMENT FOR ALCOHOL
DEHYDROGENASE SHOWING VARIABILITY IN MORE THAN ONE
. SUBGROUP, WHERE EACH SUBGROUP HAS A MINIMUM PAIRWISE
IDENTITY OF GREATER THAN 85%

Class A: Hydrophilic hypervariable residues

118 MMNNN MQ TV T GG
124 QQQQQ RL AG NH —
133 RRRRS KR NS KN —
138 YHHHH HH YF HY —
183 KEKNNK KQ NN NN NS
277 TTAAA 85 Qs 5Q AA
327 S8CGS SA DD DD '
Ciass B: Hydrophobic hypervariable residues

141 LLLLV IL A% VL TT
208 mvy v AM AA Vv
Class C: Hydrophilic variable residues

33 AAAAA AA AA AK Kp
56 TTTNN TG KK KK DD
84 RRKKK KK AA KQ KK
99 KKKKK EK EE ED AA
101 RSRRR RR AA PR EE
115 DSDDD DN RR RR DD
120 RROQRR RK RR RE —

156 SSAAA AA CcC CO CQ
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TABLE 2 —Conr'd

191 QOQPFP PP KK PK AA
227 DDDDD DD SA SK CG
233 KKKKK KK RK KK RT
247 KKKKK ST ND DD KK
360 NNNNN NS EQ AA CcC
310 SSTIT LL NS NN KK
Class D: Amphiphilic variable

17 ENLVL LP AA AA SS
34 HHHTH HH MM GH NH
117 SS88GG LT NN NN 88
190 TITTT T PA KK MR
231 KKKKK KK EQ LQ LL
297 DDDAD MS KK KK GG
303 MMMII MM VT TT DD
307 LLLLL LS NN NN QH
373 TIMTT TT RR KT DD
Class E: Hydrophobic variable

38 IIIT Il Vi LI 11
65 AALLL LL FL FG GG
76 Imvvv VI \A% \'AY MM
110 FLYYY FL MM MM NN
123 MMLLL LL i1 LI —
172 ITHI II LL Lv VI
224 ITII1 I LI LF GG
235 VVLLL LL FF FF 1L
319 FFLYF FF FF YF 'A%
328 VVVIV Vv LL LI DD
Class F: Reflexive hydrophobic variable

184 VVVVVY Vv iL IL KK
272 LLLLL LL Iv v EE
Class G: Reflexive hydrophilic variable

10 KKKKK KR KR R KK
135 KKKKK KK KQ QK —
259 NNDDD DD NN ND NN
Class H: Hydrophobicity split

213 AAAAA AT L In AA
255 TTKKK QO Al AA KK
265 58885 58 S8 AS VI
343 DbDDDD DE EE EE v
363 RRHHR RR AL LL EE
367 SS5885 S8 GS S8 VA

The one letter code for amino acids, and numbering of the horse liver enzyme are used.
Forthe purpose of classification in this table, G, P, and A are treated as either hydrophobic
or hydrophilic, with the assignment chosen to agree with the polarity of the other amino acids
in the subgroup. C, D, E, H, K, N, Q, R, §, and T are considered hydrophilic. F, I, L, M, V,
W, and Y are considered hydrophobie. The first column corresponds to the mammalian Adh
No. 1 subgroup, the second to mammalian Adh No. 2 subgroup, the third to plant Adh No.
L subgroup, the fourth to plant Adh Ne. 2 subgroup, and the fifth to yeast Adh subgroup.
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A. Hydrophilic hypervariable residues; those where more than 2
subgroups showed variability, and where variation involved polar amino
acid side chains. Eight positions were identified.

B. Hydrophobic hypervariable - residues; those where more than 2
subgroups showed variability, and where variation involved only non-polar
amino acid side chains. Two positions were identified. :

C. Hydrophilic variable residues; where polar substitution was observed
in 2 subgroups. Fourteen positions were identified.

D. Amphiphilic variable; where variability is observed in 2 subgroups,
where at least in one case polar for non-polar substitution is observed.
Nine positions are identified.

E. Hydrophobic variable; where variability is observed in 2 subgroups, but
where hydrophobic residues are substituted always for other hydrophobic
residues. Ten positions are identified. :

F. Reflexive hydrophobic variable; where variability is observed in
2 subgroups, but where the two amino acids in one subgroup showing
variation are the same as the two in the other, and hydrophobic residues
are substituted always for other hydrophobic residues. Two positions are
identified.

G. Reflexive hydrophilic variable; where variability is observed in 2
subgroups, but where the two amino acids in one subgroup are the same
as the two in the other, and hydrophilic residues are sometimes substituted
for other hydrophobic residues. Three positions are identified.

H. Hydrophobicity “splits”; where variability in both classes conserves
the polarity of the residue within each class. Six positions are identified.

RESULTS

Four classes of variation are expected to be strong indicators that the
residués occupying the variable position lie on the surface of the protein. In
order of decreasing reliability, these are class A (hydrophilic hypervariable
residues), class C (hydrophilic variable residues), class D (amphiphilic
variable residues), and class G (reflexive hydrophilic variables). In the
first case, it is unlikely that variation in all three classes is adaptive;
further, the facility with which polar groups are substituted suggests that
such substitution could not be neutral if it is in the interior of the protein.
Thus, this variation is expected to be on the surface. Similar arguments
apply to classes C and D, aithough less strongly since variation is observed
in only two groups. Finally, reflexive variation suggests somewhat greater
constraints on variation.

Inspection of the crystal structure for Adh (using Frodo software on
an Evans and Sutherland graphics display apparatus interacting with a Vax
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computer) permits two important conclusions. First, the residues identified
by this procedure are indeed all on the surface. Second, the method is
reliable for members of these classes, even in the cases where variability
is observed in only two subgroups. The side chains of only two residues
identified by the algorithm, Asp 115 and Ser 196 are partially buried. The
rest are fully exposed. _ _

In other classes, the polarity of the side chain displays considerable
conservation, even though the amino acid undergoes variation. For
example, in class H, the polarity of the side chain is conserved within
the variable subgroups, even though the polarity is different between
different subgroups. This suggests constraints on drift at these positions.
Nevertheless, 4 of the 6 residues are on the surface; however, the side
chains of the residues at two of these positions (Ser 265 and Ser 367) are
buried.

In classes B, E, and F, hydrophobicity is conserved within the variable
groups, suggesting still more stringent constraints on neutral drift. Residues
at these positions are not likely to reside on the surface, but rather in interior
positions where some variability in structure is possible. Examples of the
latter type are (a) on the inside of secondary structural units which are on the
surface, (b) at subunit contact sites, and (c) at domain contact sites. Indeed,
the algorithm is a good (but not perfect) indicator of such residues: residues
at positions 76, 141, 184, 235, and 272 lie internally but near the surface,
and residues at positions 110, 172, 224, and 319 lie at interfaces between
domains.

DISCUSSION

The algorithm presented here is a reliable predictor of surface residues,
at least in alcohol dehydrogenases. At the very least, such an algorithm
provides a fully independent way to test tertiary structure predictions for
proteins with unknown structures. However, more information clearly can
be extracted from the patterns of sequence divergence used in this algorithm.
Some consideration should be given as to how this information might be
extracted.

Two perspectives are possible. We might simply use evolutionary
information to help us analyze the structure of alcohol dehydrogenases,
together with crystallographic, kinetic, and other information, to gain
insight into the reactivity of the molecule itself. Such an analysis allows
the investigator to improve his success rate with site-directed mutagenesis.
For example, positions identified in class D are those where some proteins
direct a hydrophobic side chain into solvent. Interactions between solvent
and the hydrophobic side chain are expected to destabilize the folded form.
This implies that more stable proteins could be obtained by site-directed
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mutagenesis that replaces the hydrophobic residue at this position with a
hydrophilic residue. Thus, a yeast Adh with Met 190 replaced by an Arg
should be a more stable protein.

Similarly, class C identifies some. proteins where Pro is substituted by
another amino acid. This implies that, at this point in the tertiary structure,
the side chain can accommodate the constraints imposed by a Pro. Locking
the chain in that conformation should stabilize the protein. Thus, a yeast
Adh with Lys 33 replaced by a Pro should also be more stable.

However, from a second perspective, we might try to develop algorithms
similar to the one presented here to make predictions about details of
the tertiary structure for proteins that lack crystal structures. Detailed
considerations of the divergence in function and behavior can help.
Mammalian alcohol dehydrogenases display a wide range of substrate
specificity, and quite low specific activity with ethanol as a substrate.
This variation is probably adaptive. However, regardiess of whether the
variation js adaptive or neutral, it is clear that structural variation near the
active site is needed to account for it. In contrast, there is relatively little
catalytic variability in the homologous fungal Adh’s. All appear to act on
ethanol and acetaldehyde as sole substrates; all are quite active catalysts
with this substrate.

Together, these facts suggest that positions displaying variability in
mammalian Adh’s, but which are highly conserved in fungal Adh’s, are
likely to identify residues at or near the active site.

There is, unfortunately, a complication. Mammalian enzymes are
dimers, while yeast alcohol dehydrogenases, and perhaps all fungal alcohol
dehydrogenases, are tetramers. Thus, residues involved in the tetrameric
contact in the fungal enzyme will also be conserved more highly than the
corresponding residues in the mammalian dimer (where these residues
protrude into solvent). This complication is not necessarily bad. Much
of the work with site-directed mutagenesis in this system is being done
on the yeast enzyme. Although some guidance for this work comes from
the crystal structure of the dimeric enzyme from horse liver, the sequences
are 70% different. Any insight that the patterns of evolutionary divergence
can give us about the different quaternary structures in the yeast and horse
enzymes would help us guide these studies.

Nevertheless, the complication remains, Here again, we have a choice of
subgroups to compare. To make this comparison reasonable, the subgroup
of Adh’s that is searched for conservation (in this case, fungal Adh’s) should
have a lower MPI than the group of Adh’s that is searched for variability
(mammalian, in this case). If the reverse is true, many residues will be
identified that are identical in the first subgroup Adh’s simply because
residues in this group are generally more highly conserved. Subgroups
can be chosen with differing levels of stringency. We have chosen 5
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mammalian Adh’s (proteins 1-5, MPI=87%) and 5 fungal Adh’s (proteins
13-17, MPI=53%).

This algorithm using these subgroups identifies 24 amino acids that are
variable in the mammalian enzymes but conserved in the fungal enzymes
(Table 3). Their distribution is striking. Four clusters are evident (residues
47-57,45%;108-118, 36%; 318-328, 27%; 341348, 37%). Of course, some
of the variation in the mammalian subgroup could be the result of neutral
drift, undesirable (in this case), since we are seeking adaptive variation in
the mammalian series. Thus, the data are best filtered by removing from
the list those residues already identified as highly variable (above) and
therefore presumably able to undergo facile neutral drift. Alternatively,
the data can be filtered by excluding positions that display variability in
plant Adh’s (proteins 9-12, MPI=81%).

TABLE 3. RESIDUES CONSERVED IN FUNGAL ALCOHOL
DEHYDROGENASES (MPI=53%)} BUT VARIABLE IN MAMMALIAN
ALCOHOL DEHYDRQGENASES (MPI=87%)

Position Fungal Adh Mammalian Adh

47 H RRGRR Confirmed plant
43 T SSTTS Confirmed plant
50 L DDDDE Confirmed plant
56 D TTTNN Highly variable Confirmed plant
57 L LLMLL Confirmed plant
65 G AALLL Highly variable

84 K RRKKK Highly variable _

93 w FFAFF Confirmed plant
101 E RSRRR Highly variable

108 E GGSSS Confirmed plant
116 L LLVLL Confirmed plant
17 S SS85GG Highly variable Confirmed plant
118 G MMNNN Highly variable

141 T LLLLV Highly variable

143 D TTITV Variable Confirmed plant
207 A VVAAV: Confirmed plant
258 T SSTTT Confirmed plant
283 R QQHHH . Confirmed plant
318 I 1vI Confirmed plant
326 R DDEEE Confirmed plant
328 D VVVIV Highly variable

341 G AASSS Confirmed piant
344 K PPAAA Confirmed plant
348 K HHHHN Confirmed plant

The one letter code for amino acids, and numbering of the horse liver enzyme are used.
Residues in the region of mammatian Adh deleted in yeast (residues 120~139) are ignored.
Positions designated “Highly variable™ are identified by the algorithm discussed in the text in
Table 2. Positions identified “Confirmed plant” indicate positions where residue is absolutely
conserved in the 4 plant Adh's,



FIG. 2. View of the wall of the active site cleft at the position where the substrate

binds. Residues that are variable in mammalian Adh’s, but conserved in fungal Adh’s,

are shown as dotted spheres. These variations in structure correspond to variation in the

substrate specificities of different mammalian Adh's. Fungal Adn’s show much less variation
in substrate specificity.

FIG. 3. A view of alcohol dehydrogenase, with residues that are variable in mammalian

Adh’s, but conserved in fungal Adh’s, shown as dotted spheres. The indicated residues at

the right and on the top represent the positions of the presumed quaternary contacts in fungal

Adh. Nete in particular the absence of such residues on the left side of the structure {near

amino acid 30, marked). This suggests that the subunit contact sites are rof in this region of
the protein.



FIG. 4. A view of alcohol dehydrogenase as in Figure 3, but with the known subunit
contact sites in dimeric mammalian Adh shown as large dotted circles,
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TABLE 4. POSITIONS VARIABLE IN MAMMALIAN ALCOHOL
DEHYDROGENASE BUT CONSERVED IN FUNGAL ALCOHOL
DEHYDROGENASES, AFTER REMOVAL OF HIGHLY VARIABLE
POSITIONS AND POSITIONS DISPLAYING VARIABILITY IN PLANTS

Position Fungal Adh Mammalian Adh

47 H RRGRR Active site

48 T SSTTS Active site

50 L DDDDE Active site

57 L LLMLL Active site

93 W FEAFF Active site

108 E GGSS Active site

116 L LLVLL Near active site
207 A VVAAY Near active site
258 T SSTIT

283 R QQHHH

318 1 IIVI Active site

326 R DDEEE Active site

341 G AASSS

344 K PPAAA

348 K HHHHN

The one letter code for amino acids, and numbering of the horse liver enzyme are used.

Sixteen residues remain (Table 4). If we did not know the tertiary
structure of any alcohol dehydrogenase, we might build a model that brings
the polypeptide chain together at these residues, The result would not be
very much in error. However, two significant errors would be made, due to
the fact that some of these residues reflect different quaternary structures
in mammalian and fungal Adh’s.

In fact, 10 of the residues identified by the algorithm are at or near the
active site. Indeed, both walls of the substrate binding cavity are identified
by the algorithm; Figure 2 shows residues on one of the walls. _

The remaining 5 positions are noteworthy in their location (Fig. 3).
Two (positions 258 and 283) lie on the surface of the protein above where
mammalian Adh makes a dimer contact. The remaining 3 lie together on the
surface at the top of the protein. The obvious explanation why these residues
are conserved in the fungal tetramers but not in the mammalian dimers is that
these residues are involved in the (as yet structurally undefined) tetrameric
contacts of the yeast enzyme.

Thus, the algorithm permits us to make z prediction about the position
of the subunit contact sites in yeast alcohol dehydrogenase. This prediction
awaits test by crystallography or mutagenesis.

However, a final word must be said before leaving the discussion of
quaternary structure. Thirteen residues are identified by crystallography
as being involved in the dimer contact in horse liver alcohol dehydrogenase
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TABLE 5. POSITIONS INVOLVED IN SUBUNIT CONTACTS IN DIMERS
ARE HIGHLY CONSERVED IN MAMMAILIAN AND PLANT ALCOHOL
DEHYDROGENASES, BUT VARIABLE IN FUNGAL
ALCOHOL DEHYDROGENASES

Position Mammalian residues Plant residues Fungal residues
275 M M FIIIY
291 ITIIFVI L ALLLT
294 v v LHLLH
296 PPPPPAPP HHSS A
301 L F KCSFG
303 MMMIHIIMM VTTT PDDED
305 P P F
306 MMMMMEMM M TNNSW
308 L F VVVVT
309 LLLLLILL L v
312 R RKRR deletion
314 WWWWWIWW L deletion
316 g g

The one letter code for amino acids, and aumbering of the horse liver enzyme are used.
A single letter in a subgroup indicates that the indicated amino acid is found at the indicated
position in all proteins in the subgroup.

(Fig. 4) (Table 5). Seven of these are absolutely conserved in mammalian
enzymes (MPI=62%). Ten are absolutely conserved in plant Adh’s
(MP1=81%). However, in tungal Adh (all presumably tetramers), only
one of the positions that shows absolute conservation in mammalian Adh
is conserved. Indeed, in fungal enzymes (MPI=53%), 5 of the positions
undergo polar or amphiphilic variability; an additional position has been
deleted. This is evolutionary behavior characteristic of residues occupying
positions on the surface!

Thus, rapid divergence is seen in fungal Adh’s at positions that in
mammalian Adh are involved in quaternary interactions, and are highly
conserved because of this. Conversely, fungal Adh’s display two scts of
residues on the surface that are much more highly conserved than residues
at corresponding positions in mammalian enzymes. This suggests that the
quaternary interactions in the two groups of proteins are quite different;
the fungal tetramers cannot be simply considered to be dimers of the dimers
found in mammalian enzymes. This statement is quite significant for those
trying to engineer the behavior of yeast Adh using the crystal structure of
mammalian Adh as a guide.

CONCLUSIONS
We have discussed here a fundamentally new approach for extracting
conformational information from an alignment of homologous proteins.



STRUCTURE PREDICTION IN PROTEINS 235

A reliable algorithm is developed for identifying surface residues in a
protein. An algorithm is also developed for identifying active site residues;
this algorithm can be applied in cases where functional divergence occurs
in one subgroup of homologous proteins but not in others. Finally, we
have used these algorithms to make a prediction regarding the quaternary
structure of alcohol dehydrogenase from yeast.

Clearly, much additional information remains to be extracted from these
alignments. Some of this information has been summarized previously (11).
For those who are disappointed with the complexity of the analysis presented
here, we can offer only two consolations. First, chemical and evolutionary
considerations, mentioned at the beginning of this article, make it unlikely
that any simpler approach will be productive. A set of homologous proteins,
together with considerations of evolution, function, and structure, seem to
be necessary to provide sufficient information to ' make predictions.

Second, in organic chemistry, nothing is ever simple.

SUMMARY

A new approach for extracting conformational information from an
alignment of homologous proteins is presented. This approach extracts
information from the pattern of sequence divergence in proteins, and
considers evolutionary issues, such as functional adaptation and neutral
drift, in assigning roles in tertiary structure to residues at specific positions
in the alignment. A reliable algorithm is developed for identifying surface
residues in a protein. An algorithm is also developed for identifying active
site residues; this algorithm can be applied in cases where functional
divergence occurs in one subgroup of homologous proteins but not in
others. Finally, these algorithms are used to make predictions regarding
the quaternary structure of alcohol dehydrogenase from yeast.
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