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ABSTRACT A bona fide consensus pre-
diction for the secondary and supersecondary
structure of the serine—threonine specific pro-

tein phosphatases is presented. The prediction _

includes assignments of active site segments, an
internal helix, and a region of possible 3., heli-
cal structure. An experimental structure for a
member of this family of proteins should ap-

pear shortly, allowing this prediction to be

evaluated, © 1995 Wiley-Liss, Inc.
Key words: protein structure prediction, pro-
tein phosphatase, evolution

INTRODUCTION

Four developments have .characterized recent
work to develop useful approaches for converting se-
quence data into models of the conformation of a
polypeptide chain. First, an explosive growth of se-
quence databases has permitted conformational
models to be built from alignments of homologous
sequences rather than from single sequences.'™
Second, the explosive growth of sequence databases
has enabled the development of new, often highly
detailed, models of how protein sequences diverge
under functional constraints.5~2 These have allowed
the development of prediction tools that transcend
simple averaging of classical predictions over a set
of aligned homologous protein sequences, in partic-
ular, these that extract conformational information
from patterns of conservation and variation within a
multiple alignment.®~!! The combination of abun-
dant sequence data and detailed evolutionary mod-
els has underlain a third development, where ter-
tiary structural information is explicitly introduced
early in a structure prediction, providing a way free
of the vicious cycle that arises because secondary
structure is examined before tertiary structure is
predicted, but tertiary interactions are the strongest
determinants of secondary structure. Fourth, bona
fide predictions, those that are announced before an
experimental structure is available, have again had
their value recognized as a key part of an effort to
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"develop usefiz] prediction tools, especially as a way

to identify and avoid biases that inevitably compro-
mise methods tested using a database known at the
time the tools were developed.i? :
"The primary disadvantage of bona fide predictions
as research tools is that such predictions are made
one at a time, and must await confirmation by sub-
sequently determined experimental structures.
Thus, it is difficult to generate rapidly a large num-
ber of predictions that can permit a statistically sig-
nificant test of a prediction method. This implies
that efforts to use bona fide predictions as a research
tool must be sustained over a substantial period of
time to allow accumulation of many predictions. Es-
pecially important in these efforts are venues (such
as this) where such predictions can be published, as
these permit a record to be established of the scope
and success of prediction methods, creating an ac.
countability that itself serves the research effort.
To date, over a dozen bona fide predictions have
been made in four laboratories using tools that in-
clude an analysis of conservation and variation in
homologous protein sequences. With the recent pre-
diction of the structure of protein tyrosine phos-

" phatase’® by Livingston and Barton,!* eight of these

can now be evaluated using one or more subse-
quently determined experimental stiructures'@®
While no finité number of successful predictions can
“prove” a method, these predictions have shown that
these methods are transferrable from laboratory to
laboratory, can provide some remarkably accurate
secondary structure predictions, and can be the first
step in the generation of tertiary structural models
from secondary structural models. Particularly
noteworthy is the first prediction contest that placed
these tools in competition with the most advanced
neural networks and classical methods averaged
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over a set of aligned protein sequences.’® In this
contest, predictions based on an explicit analysis of
patterns of conservation” and variation -assigned
more residiles correctly than either the neural net-
works or classical tools. More important, the num-

ber of misassignments that confused a-helices and -

B-strands in the prediction was vanishingly small,
_ suggesting that the new tools yield secondary struc-
tural models especially suited as the starting point

for tertiary structural modeling.!” Again, however,

this was a single case, and many more prediction
contests must be arranged before the relative merits
of different methods can be evaluated in any general
way. :

Recently, prediction efforts have focused on pro-
teins and domains involved in signal transduction,
including the Src-homology 1 (SH1) domain, a pro-
tein kinase,'® the Src homology 2 (SH2) domain,’® a
protéin unit that binds peptides containing phosphe-
tyrosine, the Src homology 3 (SH3) domain,2®?! a
protein unit that may bind proline-rich peptide se-
quences, the protein tyrosine phosphatases,'* and
the pleckstrin homology (PH) domain,**#? a domain
with unknown function.?*** We turn now to the pro-
tein serine-threonine phosphatases,2® a family
- where no experimental ‘structure is known, but
where an. experimental structure may be immi-
nent.?’ We report here a predicted consensus second-
.ary structure for this protein family. '

METHODS -

Sequences of protein serine phosphatases were ex-
tracted from entries in SwissProt 27 and a multiple
alignment built by DARWIN.28 The multiple align-

ment was then adjusted by hand (Fig. 1). In partic--

ular, the nonaligning segments at the beginning
and end of the multiple alignment, presumably rep-
resenting noncore regibns, were removed, and the
insertion in human calcium-dependent calcineurin
A (accession number P16298; sequence p, between
alignment positions 073 and 074), presumably rep-
‘resenting an intron-derived sequence, was removed.
Surface and interior residues were then assigned by
an automated computer program, following a design
described in detail elsewhere.® The multiple align-
ment was then parsed (separated into segments that
form independent secondary structure) by analysis
of gaps in the multiple alignment, identifving con-
served Pro and Gly residues adjacent to surface us-
ing procedures, and identifying parsing strings, us-

ing heuristics described elsewhere.®215-18 Positions -

" that have conserved functionality in the context of
strings of consecutive or nearly consecutive active
site assignments were assigned to the active site,
as discussed elsewhere.®!%1® Many of the auto-
mated computer programs used in this work are
available on a server via electronic maijl at the ad-

dress chrg@infethz.ch (send a one word message

“help” for instructions),

RN

Secondary structures were then 3551gned to indi-
vidual parsed segments of the multiple alignment
from patterns of conservation and variation in the
various assignments using an automated computer
program that detects periodicity in these patterns. A

. 3.6 residue periodicity in interior and surface as-
signments was designated a surface helix, while

alternating periodicity in these assignments, was
designated a surface beta strand, as discussed else-
where, 628 Short (3 = 6 residues) segments of in-
terior assignments were designated as B-strands,
while heuristics designed to distinguish between in-
ternal helices and internal strands (see below) were
applied to longer segments. Segments of consecutive
or nearly consecutive residues assigned near the ac-
tive site assignments were assigned as “active site
regions.” In these regions, patterns of aminp acid
substitution are dominated by constraints relating
to catalytic function, which often obscure patterns

" that reveal secondary structure.

The secondary structures predicted here are pre-
sented in a way that facilitates their use as the
starting point for tertiary structure modeling. Im-
portant in this presentation is recent work that de-
fines the limits to which a consensus secondary
structural mode] built from a family of proteins can

represent the conformation of any individual mem-

ber of the family.?22%3 In building tertiary struc-
tural models from predicted secondary structure, the
& and ¢ angles in segments assigned as helices or
strands are held rigidly, while those in the coil seg-
ments are permitted to vary. Therefore, the most

.useful secondary structure model is presumably the

one that assigns helical or strand conformations to
the cores of these secondary structural units, those
likely to be found in all members of a protein family,
and leave flexible those regions that are not likely
to be found in all family members.

Supersecondary structure, defined here to de-

scribe the relative orientation of consecutive second-

ary structure units, was predicted based on orienta-
tion of predicted secondary. structure units with
respect to active site assignments, and searching for

compensatory covariation, as described elsewhere.'®

RESULTS AND DISCUSSION -

The secondary structure prediction is summarized
in Table I, based on the multiple alignment, surface,
interior, parsing and active site assignments re-
corded in Figure 1. Most of the predicted secondary
structural elements were obtained. by automated
procedures that implement the prediction heuristics
outlined in 1989 and 1991.%'8 Certain of the second-
ary structure segments are canonical,'® and should

" be highly reliable. In particular, helices (003—019),

(119-130), and (236-243) are reliably assigned (Fig.

- 2), as are strands (059—-062), (090-093), (135-139),

(143-146), (175-180), and (228-232). A helix can
also be dssigned to segment (101-116), provided that




a weak surface assxgnment at position 107 is ac-
cepted. -

The remaining ass1gnments of secondary strue-
ture were not routine. For example, the interior and

surface assignments made for segment (154-166)

display a perfect 3.0 residue periodicity. This is ex-
pected either for an a-helix whose contacts with the
remainder of the protein precess around the helix
axis, or for a 3,, helix. 3, helices are rarer than
a-helices, but are not unknown in protein struc-
tures.?'*? This is, however, the first time such pat-
terns have been observed in the context of a bona
fide prediction. We have listed the helix as being of
the 3,, type to encourage more effort to investigate
.patterns of divergent evolution in such ‘nonstand-
ard” secondary structures.

Internal helices are also difficult to find using
methods that assign secondary structure based on
periodicity in interior and surface assignments. An
internal helix was missed in the protein kinase pre-
diction,'® while another was correctly identified in
the hemorrhagic metalloprotease family.'® In the
. protein phosphatases, an internal helix is assigned
to positions 075—086. This assignment is based on
two criteria: (1} the length of consecutive intetior
assignments compared with the overall size of the
protein, and (2) the pairing of the helix with a
B-strand following it (090-093), where the short
parsing element (087-089) and the active site as-
signments within positions 063-074 and 094-098
require the two structural units to be antiparallel
and roughly equivalent in length. This is notewor-
thy as an example where the assignment of second-
ary structure strongly relies on a tertiary structural
hypothesis, and it will be interesting to learn
whether it is correct.

The most problematic assignments for any
method for predicting secondary structure are those
made for segmerits near the active site. Parameters
derived from a statistical treatment of protein se-
quences as a whole are the least representative in
these regions. Further, near the active site, patterns
of variation and conservation are dominated by the
demands of catalytic function, which often obscure
patterns that might indicate secondary structure
type. Previous prediction efforts have shown how
problematic these regions are in other protein fam-
ilies,?® and similar regions are encountered in the
protein phosphatase family. For example, the seg-

ment 029-050 includes a B-strand assigned to seg-

ment (030~034) and a short a-helix assigned to seg-
ment (043-049) separated by an active site region
(035-042) with poorly defined secondary structure.
The o-helix might be extended into the active site
region. However, the conservation evidently arising
from catalytic function precludes reliable tertiary
structural assignments in this region that might se-
cure this extension.

Further, the helix assigned to segment {246-262)
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contains a conserved tripeptide RxH that is plausi-
bly {(but not definitely, see below) placed at the ac-

tive site. The segment displays convincing 3.6 resi-

due periodicity (Fig. 2) if residue 254 is assigned to
the surface. To observe this pgriodicity requires,

 however, assignment of a conserved R (251} to the

surface and a conserved H (253) and a conserved G
(259) to the inside. FPurther, the DG element at po-
sitions (268-259) is a weak parsing element. Thus, a
second, weaker, assignment separates this segment
into two shorter elements separated by an active site
coil. In tertiary structure modeling, this alternative
assignment must be considered. -

Finally, the final segment (274-299) contains a
conserved SAPNY that is also plausibly placed near
the active site. The segment (274-278) might canon-
ically be assigned as a B-strand, as is segment 290—
295, This leaves, however, segment 279-289 prob-
lematic. Dipeptide parses at positions (281-282),
(284-285), (288-289), and (291-292) suggest that
this segment is a coil. However, the first is involved
in a putative active site assignment, making the as-
signment lower in reliability.

While active site assignments are sources of am-
biguity when assigning secondary structure, they
make key confributions when building a tertiary
structural medel {Fig. 3). Several long, conserved.
functionalized peptide segments are convincingly
assigned to the active site. First, the segments (035~
042), (063-074), (094-098), ‘and (174-152) are
clearly present in the active site, The isolated con-
served functionalized residues at positions 83, 111,
177, 182, and 226 are not. The segment (279-283) is
also assigned to the active site, even though it con-
tains an unusual pattern of functionalization that
suggests a noncatalytic role. Finally, the segment

251253 is also assigned at the active site, pr]marlly

based on the conservation of His-253.

Based on these active site assignments and pat-
terns of compensatory covariation, the protein ki-
nase structure can be divided into several supersec-

.ondary structural elements (Fig.. 3). For example,

both strand (030-034) and strand (059-062) end at
the active site. They are joined by helix (043-~049),
with the loop connecting helix (043-049) and the
following strand not lying at the active site. This
forces these three secondary structural elements
into 8 p—a—p segment where the two B-strands are

.part of a parallel B-sheet. With only a few excep-

tions, this supersecondary structural element is
right handed. Further, refinement of the secondary
structural model in light of this tertiary structural
modeling suggests that the helix (043-049) proba-

. bly ineludes additional amino acids at the end, most

probably residues (040-042) and (050).. Together,
these considerations support a good model of the
conformation of these 35 amino acids.

Similarly, internal helix (075-086) starts near
the active site, while the following strand (090-083)
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6 : - T.F. JENNY ET AL.

TABLE L. Secondary Structure Prediction for the Serine/T. hreonine Specific Protein Phosphatases
Segment Structure Comments .
003-019 Helix Reliable, perfect amphiphilicity
021-022 Parse PN, PS, string of 5 surface assignments
-023-026 " Coil In some protein family members, possibly an edge strand
027-029 Parse SPP, DSP, PXP, NP, 8P, conserved P
030-034 Beta Near active site region 035-042
G35-042 - Active site Conserved. D, HGQ, D
043049 Alpha Near active site region 035-042
050-058 Parse Gap, PP3SN, GGDP, GGSP
- 059-062 Strand ° Reliable
063-074 Active site
075-086 Helix Internal helix
087-088 Parse PS, PN, PD
090-093 Strand Reliable, central in a sheet
094-098 Active site Conserved RGNHE
101-116 Helix Reliable, residue 107 assignment must lie on the surface
117-120 Parse Gap, GGNS, GNS
119-130 Helix Reliable ‘
134 Parse Weak, partly conserved P, break in amphiphilicity of preceding helix
135-139 Strand Reliable '
140-142 Parse ‘NNS, DG
143-146 Strand Reliable ’
147-152 Active site Conserved HGGXSP
151-153 . Parse SPS, SPD _
154-166 Helix 3, geometry suggested by patterns of conservation and variation
169-174 Parse PDSG, GGP, PP, GP .
175-180 Strand " Reliable .
181-225 Parse SDPSGD, NNNP, PG, SP; surface loop distant from, active site
228-232 Strand Reliable, core of B-sheet :
233-235 Parse- GPD, GSD
236-243 Helix Reliable, surface
243245 Parse NNG, NNN
246-262 Helix Middle passes near active site
263-273 Parse Gap; DGG, PS :
274-278 Strand - Unusual patterns of conserved functional groups
279283 Active site Conserved SAPNY
284287 Coil
288-289 Parse GN .
290-295 . Strand _
297-299 Parse DDS, end of core alignment

ends at the active site. These are therefore assigned
as a supersecondary structural unit formed by two
antiparallel structural units, a helix and a strand.
The most plausible structural model assembles this
supersecondary structural unit with the preceding
supersecondary structural unit to yield a paralilel
B-sheet. These assignments suggest that this part of
protein phosphatase forms an o~@ parallel sheet
fold, well known in structural biclogy. Assignments
of the remaining supersecondary structural ele-
ments are less reliable, and await confirmation by a
detailed covariation analysis. ‘
One application of secondary structural medels is
to detect distant homology between protein families
that is riot established by statistically significant se-
quence similarities.. In this application, the pre-
dicted secondary structure from one family of pro-
teins is aligned either with a predicted secondary

structure or an experimental structure from another
protein family that shares poor sequence similarity.
For example, in its search of the database, DARWIN
identified and aligned six positions (169-174) of the
serine-threonine protein phosphatases with a ty-
rosine-specific protein phosphatase {a PPSHAP se-
quence), suggesting that the tyrosine and the
serine-threonine protein phosphatase families
might be homologous despite their apparent mech-

‘anistic differences. Superimposition of the second-
ary structural elements of the two protein families,

one predicted and the other experimental, clearly
shows that these two families are not homolegous,
however. This suggests that this particular se-
quence similarity in this one tyrosine phosphatase

~ arose by convergent, not divergent, evolution.

Finally, several distinct mechanistic classes of en-
zymes are known that catalyze the transfer of a




RO, Py

234'& ,
ey
241 Amph;

it s e oS R R M P MR g 2Tt o e

'SERINE/THREONINE-SPECIFIC PROTEIN PHOSPHATASES

- 119-130

. 236-243

R - : _ 260

Fig. 2. Helix wheels for the éerine—tﬁreonlne protein phosphatases.

Inside [123




10 .

28.
27,
28.
29.

30,

Cohen, P. The stmcf.ﬁre and regulation of pro‘tein phos- .,

phatases. Annu. Rev. Biochem. 58:435-508, 1989,

Barford. D., Keller, J. C. Cocrystallization of the catalytic,

subunit of the serine/threonine specific protein’ phos-

phatase 1 from human in complex with microcystin LR. J."

Mol. Biol. 235:763-768, 1594. )

Gonnet, G. H., Benner, 8. A. Computational biochemistry
research at ETH. Technical Repert 154, Departement In-
formatik, March, 1991, . i :

Gerloff, D. L., Jenny, T. F., Knecht, L. J., Gonnet, G. H,,
Benner, S. A. The Nitrogenase MoFe Protein: A secondary
structure prediction. FEBS Lett. 318:1 18-124, 1993. :
Jenny, T. F., Benner, 5. A. Evaluating predictions of sec-
ondary structufe in proteins. Biochem. Biophys. Res. Com-
mun. 200:149-155, 1994, . C :

3L
32,
33.
34.

3.

_T.F.JENNY ET AL

Pavoné, V., Di Blasio, B, Santini, A., Benedetti, E., Pe-
done, C., Toniole, C., Crisma, M. The longest, regular pely-
peptide 310 helix at atomic resolution. J. Mol. Biol. 214:
£33-635, 1990. ]

Barlow, D: J., Thornten, J. M. Helix geometry in proteins.
J. Mol. Biol. 201:601-619, 1988. .

Kim, E., Wyckoff, H. W. Reaction mechanism of alkaline
phosphatase based on crystal structures. J. Mol. Biol. 218:

. 449464, 1991,

Benner, 5. A., Glasfeld, A., Piccirilli, J. A. Stereaspecific-
ity in enzymology: Its place in evolution. Topics Steree-
chem. 19:127-207, 1989. ’

Russell, R. B., Barton, G. J. The limits of protein secondary
structure prediction accuracy from. multiple sequence

alignment. J. Mol. Biol. 2_34:951—957, 1993.




