
Recent achievements in synthetic biology have 
raised the question of what we mean by ‘life’. Is a 
definition possible?
Yes, one can always write out a definition for an abstract 
concept like ‘life’. But a definition has value only if it is set 
within the context of a theory that gives its terms 
meaning, as Carol Cleland and Chris Chyba argue in 
their paper published in 2002. And a definition is most 
useful if it provides what a scientist needs.

For example?
Well, water can be defined as a molecule built from two 
atoms of hydrogen and one atom of oxygen. But this 
definition must be set in the context of atomic theory 
from chemistry to have meaning. Further, for a scientist 
wishing to identify water, this definition may be less 
useful than an operational definition - for example, that 
water is a substance that freezes at 0°C, boils at 100°C, 
has a density of 1 gram per cubic centimeter, and the like.

How does this apply to life?
Consider this definition from a group of scientists 
empanelled by NASA in 1994 who suggested that life 
could be defined as a ‘self-sustaining chemical system 
capable of Darwinian evolution’.

Self-sustaining? But doesn’t most life need to eat 
something from outside itself?
Yes. But the panelists, when asked, pointed out that ‘self-
sustaining’ was not used to mean that the life must not 
eat. Rather, the term means only that life must not need 
to be provided its sustenance through the action of an 
intelligent being, a gardener or a keeper.

Aren’t you just defining life as we know it? Is this 
not a bit Earth-o-centric?
This definition is grounded in a deeply held theory of life, 
as I argue in my book Life, the Universe and the Scientific 
Method. It tells us what we definers believe about what is 

possible in reality and what is not. Thus, we can conceive, 
and many science fiction authors have conceived, of life 
made from pure energy or not requiring Darwinian 
evolution to exist. Surely, if we encountered such beings 
during a real (not fictional) star trek, and if they were to 
talk to us (as aliens generally do in science fiction), we 
would instantly revise our definition to include them. We 
do not do so now because we do not believe that they 
could possibly exist. That is, we believe that anything that 
has the attributes of life would be chemical and would 
have come to exist via Darwinian evolution. Admittedly, 
those beliefs are based on our knowledge of Earth life, 
and of no other.

Are those beliefs justifiable from any other 
perspective?
One can do an interesting thought experiment. In a few 
years, we may be able to identify DNA sequences that 
prospectively help our children survive, and gain the 
technology that allows these sequences to be placed into 
our germ lines to generate mutant children that are fitter 
by design. If this happens, then our species will start to 
escape Darwinian mechanisms for improving our genes. 
The good news is that we will no longer need to see 
children die of genetic disease; a large number of bad 
mutations is the Darwinian cost of a few good ones. With 
gene therapy, we may imaginably be able to scan the germ 
line for deleterious genes and remove them.

Will this mean that we are no longer ‘life’?
By this definition, yes: Darwinian evolution does not 
allow prospective mutation. Through this technology, 
human kind would be able to evolve in a more Lamarckian 
way. But this scenario is not implausible. So perhaps we 
should start thinking now about a better definition-
theory of life.

Well, I see the problem. But is the NASA definition 
useful?
Cleland and Chyba argue that it is not, taking it to imply 
that explorers, let us say on Mars, would need to observe 
a possible life form for years, waiting for it to evolve 
before they could be certain that it is life. I disagree, since 
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we can define chemical structures necessary to support 
Darwinian evolution from first principles, and look for 
those structures. For example, within the ‘second-genera-
tion’ theory of the gene, my group and I argued that a 
universal genetic molecule in water must have a repeating 
charge in its backbone, as this is the only kind of molecule 
that can robustly support Darwinian evolution.

What is this ‘second-generation’ theory of the gene?
The ‘first-generation theory’ was proposed by Watson 
and Crick in 1953, and is now taught in every high school. 
Here, DNA is modeled as a ladder having rungs of 
uniform size because big purines pair with small 
pyrimidines, hydrogen bonds hold the pairs together, and 
the sugar-phosphate backbone is largely incidental to 
strand-strand binding, providing simple scaffolding. 
Efforts by synthetic biologists to make alternative kinds 
of DNA have led us to discover that the sugars and the 
phosphates are integral to the molecular recognition 
phenomenon. For example, the repeating backbone charge 
drives strand-strand interactions away from the backbone 
and towards useful places, keeping single strands largely 
extended in the process.

And the repeating charges are useful for Darwinian 
evolution … how?
To support Darwinian evolution, a genetic molecule 
must be able to change the details of its structure without 
changing its overall biophysical behavior. This ability to 
change structure but not behavior is actually very rare in 
molecular systems. Take proteins, for example. A single 
amino acid replacement can cause a previously soluble 
protein to precipitate, as in sickle cell anemia. This would 
be fatal in a genetic molecule. However, a repeating back-
bone charge dominates the biophysics of a DNA polymer 
so much that one can change its sequence without 
changing its biophysical properties. And this allows the 
biopolymer to support evolution.

Does the bacterium that Craig Venter made help us 
to define life?
Not really. Craig Venter’s bug is essentially the same as a 
bacterium that came to us through Darwinian evolution, 
which provided all of its genetic information. Venter’s 
bug is alive and is life, but it is not particularly new in 
either of these features. Its DNA is fully synthetic, but the 
information within its sequence is natural. Likewise, the 
casing - the cell in which it replicates and instructs 
protein synthesis - was taken preassembled from an 
exist ing cell. Nevertheless, this synthesis fits nicely into 
the century-long tradition of natural products synthetic 
chemistry. Natural products chemists first analyze the 
structure of a biomolecule to determine the arrangement 
of its constituent atoms, and then synthesize exactly the 

same biomolecule from scratch. This was first a way to 
confirm the structural assignment. Later, making bigger 
and bigger molecules was a way to set ‘grand challenges’ 
to test chemistry and its theories. Indeed, any field that 
allows synthesis of new forms of its subject matter allows 
ideas and hypotheses to be much more directly tested 
than in fields limited to observation and analysis.

Aren’t there serious dangers in making synthetic 
forms of life?
I published a Venn diagram in Life, the Universe, and the 
Scientific Method to illustrate different kinds of potential 
hazards related to synthetic biology (Figure 1). If the life 
is truly artificial - for example, if it is built from one of the 
weird genetic alphabets where the DNA has six different 
kinds of nucleotides (G, A, C, T, Z and P) that we have 
developed, then it is less hazardous to us as a pathogen; 
human beings would not be particularly nutritious, from 
its viewpoint. Clearly, Venter’s bug has all three of the 
attributes illustrated in Figure 1 that are potentially 
danger ous: it is built of the same stuff as we are, it is self-
sustaining, and it can evolve. But since it is essentially 
identical to a bacterium that already exists, the danger it 
presents is hardly new. Further, bugs that have been partly 
synthesized by humans, throughout the past 30 years of 
synthetic biology, have never been able to survive well in 
competition with bugs that have had the advan tage of 
billions and billions of years of Darwinian evolution.

The Economist claims that with Venter’s synthesis 
of a cell, a ‘new era of synthetic biology is dawning’. 
Is this true?
Certainly not. Synthetic biology has been with us ever 
since recombinant DNA technology first allowed 
biologists to synthesize new forms of life - at least in the 
sense of constructing new DNA molecules and putting 
them into cells. In fact, the term ‘synthetic biology’ was 
coined in 1974 by Waclaw Syzbalsky to describe the 
application of recombinant DNA technology to generate 
organisms with new genetic properties. What Venter 
demonstrated is that it can be extended to replacement of 
the entire genome of a cell, not just changing parts of it.

Is there value in doing this synthesis?
Yes, in many ways, but perhaps most important, synthesis 
can complement observation, controlled perturbation, 
and analysis in a science. Technology to enable synthesis 
has been available to chemists for more than a century, 
and has contributed to nearly every advance in chemical 
theory. For example, nearly all of our understanding of 
the chemical behavior of enzymes, metabolisms, and 
even diseases has come with the help of chemically 
synthesized molecules. Synthesis, in turn, allowed 
chemistry to complete its central paradigms faster than 
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fields lacking synthesis. Fields lacking synthesis include 
astrophysics, cosmology, and planetary science. Imagine 
how much faster these fields might advance if we could 
synthesize new planets, stars or new universes to test 
their theories. The planet of Magrathea, whose inhabi-
tants, according to The Hitchhiker’s Guide to the Galaxy, 
accumulated fabulous wealth building planets to order, 
sadly does not exist.

Biology has historically also lacked synthetic tech no-
logy - at least until the 1970s, with the advent of recom-
binant DNA technology. At first, biologists used biotech-
nology to cut and paste single genes, rearranging what 
was found naturally to modify living systems. In the 
1980s, however, synthetic biologists moved away from 
nature, synthesizing entire genes encoding proteins, 
generating new artificial genetic systems with extra 
nucleotide letters, and engineering the expression of 
proteins with more than 20 different kinds of amino 
acids. These have already had an impact - for example, 
‘GACTZP’ DNA (DNA built from the natural G, A, C, T 
nucleotides as well as our synthetic Z and P nucleotides) 

is, in one of its forms, incorporated into diagnostics 
assays that measure the load of HIV virions in patients at 
risk of AIDS. Here, the fact that extra ‘letters’ in the DNA 
alphabet do not bind to natural nucleotides allows the 
clinical assay to detect viral DNA without interference 
from natural DNA. Today, clinical diagnostics tools based 
on our synthetic genetic systems help personalize the 
care of some 400,000 patients annually worldwide. 
Curious readers will find a 2004 review I wrote on some 
of these applications listed below.

Where can I find out more?
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