
CHAPTER 1

The early days of paleogenetics:
connecting molecules to the planet

Steven A. Benner

1.1 Introduction

Anyone asked to write about the early days feels

elderly. Fortunately, Emile Zuckerkandl’s intro-

duction shows that the ideas that led to this

volume have been around for some time, at least in

their basic form, and are rooted in ideas of many

heroes of modern molecular biology, including

Pauling, Anfinsen, and Zuckerkandl himself.

In 1980, my laboratory was unaware of

the Pauling–Zuckerkandl paper (Pauling and

Zuckerkandl, 1963; seeChapter 2 in this volume for a

fuller discussion of the implications of this paper)

when we set out to resurrect ancient proteins from

extinct organisms.Mygroup, then consisting of only

Krishnan Nambiar and Joseph Stackhouse, was

trained to describe the chemical structures and

behaviors of enzymes. In those days technologywas

allowing molecular scientists to extend these

descriptions to atomic resolution, the picosecond

time scale, and the microscopic rate constant.

But what good were clever experiments to

determine, for example, which of two hydrogens

was removed by a dehydrogenase (Allemann et al.,

1988), or whether the replacement of carbon

dioxide by a proton on acetoacetate proceeded

with retention or inversion of stereochemical con-

figuration (Benner et al., 1981)? It occurred to us

that we might be doing the biochemical equivalent

of studying a Picasso with an electron microscope.

Were we not describing biomolecular systems to

resolutions far greater than they were designed?

Biomolecules are not designed, however. They are

the products of natural selection imposed upon

random variation in their chemical structures.

As the result of a combination of historical

accident, selective pressures, and vestigiality, all

constrained by physical and chemical law, differ-

ent behaviors must be interesting at different

levels. Biomolecular behaviors that influenced the

ability of a host organism to survive, mate, and

reproduce were especially interesting, as these had

been fashioned by natural selection. Behaviors that

did not, were not, because they had not. As a cri-

terion for selecting interesting chemical features of

a biomolecule to study in detail, an understanding

of the relation between biomolecular structure and

behavior and fitness was important.

It did not take long at Harvard to realize that

this relation was going to be difficult to under-

stand. There, Martin Kreitman, Robert Dorit, and

others, including some very dialectical biologists

(Levins and Lewontin, 1985), were struggling to

make this connection starting from the side of

biology (Kreitman and Akashi, 1995). Despite this

interest, it was proving difficult to connect any

biomolecular structure or behavior with the sur-

vival of an organism, at least in a way that would

be compelling to those who chose to deny it

(Lewontin, 1974; Clarke, 1975; Gillespie, 1984,

1991; Somero, 1995; Powers and Schulte, 1998). In

fact, the discussion was central to the most hotly

disputed dispute in molecular evolution, between

neutralists and selectionists, where both sides of

the dialectic were populated by individuals who

were professionally intent on showing how any

data interpretable in favor of one side could

equally well support the other.

As chemists, we had no part in this fight.

However, a review of the contending sides of these

disputes (Benner and Ellington, 1988) reminded

us of analogous disputes in organic chemistry.
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These were often Seinfeld arguments about noth-

ing. For example, chemists had for years discussed

the non-classical carbocation problem (Brown,

1977). This was a disagreement about whether the

structures of positively charged organic molecules,

in general, were better modeled by a formula with

dotted lines, or by two formulas without dotted

lines. Rational observers realized that one model

was undoubtedly better for some molecules,

whereas the other was better for others. After all,

similar issues had been addressed and resolved in

many molecular systems. For example, the struc-

tures of benzene and many boron-containing

compounds both contained dotted lines. Which

model was best undoubtedly depended on the

exact structure of the molecule being discussed. By

1980, this dispute had forced chemists to appreci-

ate a certain truism about molecules: organic

molecules are never productively discussed in

terms of a general molecular structure; they must

always be considered individually. This truism, of

course, recognized that the discussion of models

for the structure of individual molecules could

nevertheless be interesting.

To chemists, the neutralist/selectionist dispute

was directly analogous. This was essentially a

disagreement about whether changes in the che-

mical structure of the generic protein would, in

general, change its behavior enough to change its

contribution to the fitness of the generic organism.

Again, the rational answer was in some cases yes,

and in other cases no, depending on the exact

structure of the system. Proteins are, after all,

organic molecules, suggesting that they must be

considered individually. As expected by those

who understood this truism, the neutralist/selec-

tionist dispute, in its general form, melted away as

soon as our ability to analyze the behavior of

individual proteins improved (Hey, 1999).

Even in 1980, however, it was clear that con-

necting fitness to the behavior of individual bio-

molecules would always remain interesting, for

many reasons. First, that understanding would

certainly help us select behaviors of those biomo-

lecules to study in detail. If a behavior was

important to fitness, it might be highly optimized.

Detailed study might therefore instruct us about

the interaction between chemical structure and

biomolecular behavior, instruction worthy of

the growing armamentarium of biophysics and

molecular biology.

1.2 History as an essential tool to
understand chemistry

It was clear, however, that Structure Theory in

chemistry would not support a deep under-

standing of biological molecules. With simple

molecules, like methane, one does not ask about its

purpose. This is not true about complex systems,

or living systems, where it is appropriate to ask:

why does it exist? History can be key to any answer

to why? questions. Any system, natural or human-

made, can be understood better if we understand

both its structure and its history. We would not

understand the QWERTY computer keyboard, the

Microsoft Windows operating system, or the US

Federal Reserve Bank (for example) if we simply

deconstructed each into its parts. An under-

standing of the history of each is essential to an

understanding of the systems themselves.

Structure Theory from chemistry had absolutely

no historical component. Methane is how it is

because of its structure. It always has been this

way, and always will be. Where the methane came

from and how it got to us was fully irrelevant to

our understanding of this molecule. This raised the

next in a series of questions leading to experi-

mental paleogenetics: how were Structure Theory

and natural history to be combined to better

understand biomolecules? Fragments of the his-

tory of life on Earth are found in the geological

strata, of course. But the fossil record is notoriously

incomplete, and would not provide information

about proteins even were it not. Molecular fossils

(such as those found in petroleum) can be

informative, but generally not about individual

protein function. Further, any analysis of mole-

cular function must recognize that the behaviors

that confer fitness are determined by the system,

including other organisms (ecology), the physical

environment (planetary biology), and even the

cosmos (astrobiology). This level of complexity

defeats most theoretical contexts.

It was clear, however, that the chemical struc-

tures of proteins themselves contain historical
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information. The historical relationships between

proteins related by common ancestry can be

inferred by comparing their amino acid sequences,

a theme that was already well developed by 1980

(Dayhoff et al., 1978). Analysis of protein sequences

could generate the basic elements of an evolu-

tionary model: a multiple sequence alignment, a

tree, and sequences of ancestral protein sequences

inferred from these. From these, it might be pos-

sible to construct narratives connecting biomole-

cular structure to fitness.

This process was analogous to processes well

known in the field of historical linguistics

(Lehman, 1973), which Robert Breedlove had

described to me when I was an undergraduate.

This field infers the features in ancestral languages

by analyzing the features of their descendent lan-

guages. For example, the Proto-Indoeuropean

word for snow (*sneigwh-) can be reconstructed

from the descendant words for snow in the des-

cendant Indoeuropean languages (German schnee,

Frenchneige, Irish sneachta, Russian sneg, Sanskrit

snihyati, and so on). Other features of the histories

of these languages, such as the universal replace-

ment of sn- by n- in the Romance languages, can

also be inferred from this analysis. The analogous

inferences about ancestral structures could also be

done for proteins.

The reconstruction of ancestral languages pro-

vides paleoanthropological information as well.

From the ancestral features of reconstructed

ancestral languages, one can extract information

about the people who spoke them. For example,

the ease with which we reconstructed the Proto-

Indoeuropean word for snow (with some conces-

sions; the Sanskrit word cited above actually

means ‘‘he gets wet’’) tells the story that the Proto-

Indoeuropeans themselves lived in a locale where

it snowed. In 1980, we hoped to tell analogous

stories using proteins inferred to have been pre-

sent in ancestral forms of life on Earth.

1.3 Swapping places: biologists become
chemists and statisticians, just as
chemists become natural historians

But would these be only just-so stories? The just-so

story is one of the worst insults that a biologist can

direct at another. This epithet accuses a profes-

sional adversary of building ad hoc explanations

for specific facts (how the zebra got his stripes).

The events behind a just-so story (an ancestral

zebra took a nap under a ladder) cannot be inde-

pendently verified, and are not mathematically

modelable. Further, the story could easily be

replaced by a different story, just as compelling,

had the observations been the opposite. It was

clear in 1980 that once the insult stuck, papers

would be rejected, grant applications would be

turned down, and tenure would be denied.

Curiously, this issue also had a parallel in

organic chemistry. Chemists are well known for

their ability to use Structure Theory to explain a set

of facts, only to be told that the facts are opposite,

and then to explain the counter-facts using the

same theory. Chemists are rarely defensive about

this. In part, this is because Structure Theory as a

heuristic has been so successful. If one can make

petrochemicals and pharmaceuticals (and much in

between) using a theory based on plastic tinker toy

models, who can argue?

The success of non-mathematical Structure

Theory from chemistry makes a larger point about

human knowledge; that it is intrinsically heuristic

and intuitive. This is true even for knowledge that

is cast in the language of mathematics. This con-

clusion had been reached by the last century of

epistemology as well (Suppe, 1977). Nothing is

‘‘proven’’ (Galison, 1987); the perception of proof is

only a function of the number of logical steps that

must be taken to premises that are intuitive and

heuristic. Experiments end when a burden of proof

is met, where that burden is defined by the culture,

not by logic.

This point is not fully appreciated by many

modern biologists. Many modern biologists seek to

avoid the just-so story epithet, and the perception

of theirs being a heuristic and/or intuitive theory,

by placing a mathematical formalism on top of

their models. This drives them towards statistics,

which analyzes collections of things. Statistics, in

turn, nearly always requires the statistician to deny

the truism in chemistry that there is no such thing

as general molecular behavior. This, in turn, means

that statisticians, in their pursuit of general models

framed in mathematical language, are not able to
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exploit the only research paradigm that has shown

itself to be successful in understanding molecules.

In fact, the barrier between mathematics and

molecular science is still higher. Statisticians are

taught that a model is not scientific if it is not

formulated in the language of mathematics.

Therefore, statisticians are perplexed that a field

like chemistry can be successful. And even as they

acknowledge that proteins are chemicals, statisti-

cians insist that unless protein sequences are stu-

died as collections, the studies are ‘‘unscientific’’

(Robson and Garnier, 1993). Thus, statisticians

actively work to deny to all other scientists the one

research paradigm that has been successful to

understand molecules.

This cultural phenomenology has set up a role

reversal of a sort. With their training in heuristic

science, chemists may have been better prepared to

make the connection between chemical behavior

and biological fitness than biologists. As physical

scientists, chemists were trained in mathematics

and statistics. Because they understood heuristic

models, however, they used statistics and mathe-

matics as tools, not as the way to respond to the

complaint, ‘‘You are not doing real science’’.

Further, chemical theory grows by accretion,

rather than revolution; it adds theories, ideas, and

perspectives to its heuristic theory. This is exactly

what is needed to understand the broader picture

in contemporary biology. Here, by the end of the

current century, we expect to see a global view of

reality that combines chemical models, systems

models, physiological models, paleontological

models, and geological models. If the output is still

dissatisfying, then the global view will add still

more models. We expect (or, perhaps better, hope)

that over time, an increasingly dense set of models,

all interconnecting, would eventually converge

upon a global picture for biology, just as it has for

chemistry over the past century.

1.4 Managing heuristic science

This discussion should not be viewed as a defense

of so-called soft science. Rather, it is simply an

observation of how human knowledge really

works. The observation need not be viewed

pejoratively. Human scientists can be creative and

productive because human understanding is intui-

tive and heuristic. Thus, while the scientific

method taught in middle school emphasizes the

importance of making unfiltered observations,

analyzing data without prejudice, and doing

value-neutral experiments, the productivity of

scientists does not depend on the extent to which

they meet this largely fictitious ideal, but rather

how they manage the closedness of mind, the

values, and the filters that come naturally with

human cognition.

This concept of management is important.

Chemistry does not ignore the natural tendency of

humans to convince themselves that data contain

patterns that they do not, or that patterns compel

models when they need not, or that models are

reality, which they are not. Rather, chemistry

establishes processes that manage this tendency.

Key to this management is the use of experiment

on systems that have been synthesized (Benner

and Sismour, 2005). The use of synthesis to create

new forms of matter, whose behavior is expected

from a heuristic theory, provides an opportunity

for an independent test of the heuristic. De novo

synthesis in not available in many other dis-

ciplines. For example, planetary scientists cannot

synthesize a new planet to test their theories on

how planets work. If they could, the field would be

dramatically transformed.

How could we use synthesis and experiment to

manage the development of our historical view of

biomolecules? In 1980, the answer was materi-

alizing before our eyes. Jeffrey Miller, Michael

Brown, Alan Fersht, and others were developing

the technology to create a protein having any

sequence that might be desired. Most protein

engineering was targeted to replace single amino

acids in extant proteins for the purpose of under-

standing their role in a protein’s catalytic behavior.

But it was clear that protein engineering technol-

ogy could also be used to synthesize ancestral

proteins whose sequences had been inferred using

ideas outlined by Pauling and Zuckerkandl, where

the resurrected proteins could then be experi-

mentally studied in the laboratory.

This is how the idea for experimental paleoge-

netics (which we originally called paleobiochem-

istry) began in our laboratories in 1980. We wanted
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to bring ancient proteins back to life to examine

their behaviors. This would use synthesis to add

an experimental component to our understanding

of the history of biomolecules. The historical

component was necessary to understand biomol-

ecules, just as it was to understand the US Federal

Reserve banking system. This experimental com-

ponent would also manage the problems intrinsic

to a heuristic science. Through this combination,

we hoped to understand how an interaction

between chance, history, vestigiality, selection, and

physical law determined the structures and behav-

iors of individual protein families. From there, we

could perhaps make inferences about how these

were related to fitness and physiological function.

Then, perhaps, we could select interesting biomo-

lecular behaviors to study.

1.5 Selecting proteins to begin
experimental paleoscience

But what individual protein should we look at?

While the Maxam–Gilbert and Sanger papers on

DNA sequencing made clear that the sequencing

of the human genome was only a matter of time,

databases in 1980 contained very few protein

sequences. The only families of proteins that were

sufficiently well represented to support experi-

mental paleogenetics were the cytochromes, the

hemoglobins, and the ribonucleases (RNases).

Cytochromes were, of course, substrates for cyto-

chrome oxidases. With no funding for this project

(the National Institutes of Health routinely dis-

approved our proposals in this area) we could not

possibly resurrect ancestral cytochromes, only to

then need to resurrect their ancient oxidases.

Hemoglobins were complicated to express, a prob-

lem solved only later. This left the RNases.

Fortunately, Jaap Beintema and his colleagues in

Groningen had done the yeoman’s job of sequen-

cing RNases (at the level of the protein) from a

wide range of ruminants and closely related non-

ruminant mammals (Cho et al., 2005). They had,

Dayhoff-style (Dayhoff et al., 1978), inferred the

sequences of the ancestral proteins throughout the

recent history of the digestive enzymes. Barnard

had raised an interesting hypothesis suggest-

ing that digestive RNases might be unique to

ruminants, and be an adaptation to their unique

ruminant digestive physiology (Barnard, 1969).

And so, we had a place to start.

The story of RNase resurrections is told in a

separate chapter in this volume (see Chapter 18).

This story illustrates well the value of paleomole-

cular resurrections for creating an understanding

of the relation between organismic and molecular

biology on one hand, and the changing ecosystems

wrought by a changing planet on the other. It also,

in the process, showed how we might use paleo-

genetics to select in vitro biomolecular behaviors to

study in a way that considers physiological rele-

vance (Nambiar et al., 1984, 1987; McGeehan and

Benner, 1989; Benner and Allemann, 1989; Stack-

house et al., 1990; Allemann et al., 1991; Jermann

et al., 1995).

But our work with RNases, and work in other

laboratories in other systems, also showed that

experimental paleogenetics could create con-

tentious disputes of its own. Many of these relate

to the reliability of statistically grounded tools to

infer the structures of ancestral proteins, and how

the outcome of paleogenetics experiments should

be interpreted. These issues will be addressed in

this chapter, and as they are in other chapters in

this volume. I will describe the use of paleogenetic

experiments to manage them in one system, the

alcohol dehydrogenases.

1.6 Mathematical models are
nevertheless important

Mathematical formalism is useful in the inference

of ancestral sequences from the sequences of their

descendants. Protein sequences lend themselves to

representations as linear strings of letters. As

organic molecules, such linear representations do

not capture much of their organic chemical behav-

ior, of course. Nor do such linear representations

capture the behavior of protein sequences during

divergent evolution. Homoplasy, correlated change,

and a host of other features reveal protein sequences

for what they really are: poor models of the struct-

ures of real organic molecules.

Nevertheless, mathematical formalisms that treat

proteins as linear strings of letters turn out to be

useful (Benner et al., 1997). Any model that
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treats protein sequences as linear strings diverging

via aMarkovian process provides a null hypothesis,

a description of protein evolution that would have

happened if proteins were formless, functionless lin-

ear strings. By observing how proteins divergently

evolve, and comparing this reality to the null

hypothesis, one extracts a signal about form and

function (Benner et al., 1997).

The null hypothesis provides a serviceable

starting point for ancestral reconstruction as well.

The underlying Darwinian process is, of course,

semi-random. Its departures from randomness,

arising from biases in the DNA-polymerization or

error-repair mechanisms, nucleosome structure, or

other features of the DNA molecule itself, are not

likely to be strongly correlated with protein

structure and behavior (again analogous to lan-

guage; the conversion of sn- to n- is largely unre-

lated to the dictional meaning of the word snow).

Hence, it is not surprising that respectable infer-

ences of ancestral states can be made using the

linear string model.

There is nevertheless an ongoing dispute

over which methods are precisely best for infer-

ring ancestral sequences (Yang et al., 1995; Zhang

and Nei, 1997; Pagel, 1999; Nielsen, 2002; this

volume, see Chapters 4 and 8 for example). From a

practical perspective, these disputes do not have

a large impact on the practice of experimental

paleoscience. In practice, the principal ambiguities

do not generally arise from subtleties in models for

inferring ancestral sequences. Rather, they arise

from incomplete sequence data-sets, uncertain gap

placement in multiple sequence alignments,

uncertain tree topology, and too much sequence

divergence relative to tree articulation. This creates

uncertainties in inferred ancestral character states

long before the choice of the model becomes

determinative.

Thus, if an evolutionary tree is highly articu-

lated, the branching topology is secure, and the

overall extent of sequence divergence is small,

then different mathematical models infer more or

less the same ancestral sequences. When the tree is

not highly articulated, the branching topology is

not secure, and the overall extent of sequence

divergence is large, even the most mathematically

sophisticated analysis cannot help much.

Today, a practicing paleogeneticist is advised to

apply mathematical models at all levels of

sophistication to build many different candidate

multiple sequence alignments, candidate evolu-

tionary trees, and candidate ancestral sequences.

Additional information, such as crystallographic

and paleontological data, should be both used and

not used. From this will come a view of the

ambiguity in the ancestral sequences that arises

from the ambiguity and bias in the input.

Four strategies can then be considered to man-

age this ambiguity. The first relies on improving

the statistical models of sequence divergence, in

the hope that an increase in the sophistication of

the mathematical formalism will resolve ambi-

guity. The second involves collecting more

sequences in the hope of eliminating the ambi-

guity. The third ignores the ambiguity, in the hope

that the ambiguity occurs only at sites that are not

critical for the biological interpretation.

The fourth involves synthesizing and studying

many candidate ancestral sequences to cover all

plausible alternative reconstructions, or to sample

among the plausible alternative reconstructions.

The experimentalist then asks whether the behav-

ior that supports a biological interpretation (and

therefore the interpretation itself) is robust with

respect to the ambiguity arising from uncertainties

in the models, insufficient data, poorly articulated

trees, or other issues in practice. This is our pre-

ferred method. The preference reflects a belief

(perhaps better described as a faith) about a fea-

ture of protein chemistry that is presently

unknown, but is not unknowable in principle. If

the hypersurfaces relating protein behavior to

protein sequence were extremely rugged, and if

every amino acid replacement caused a significant

change in behavior, then ambiguity would defeat

the paleogenetic research approach in all but the

most ideal cases. Fortunately, biochemical reality

appears to be different. For nearly all proteins,

some amino acid replacements at some sites have

large impacts on functional behaviors. Replace-

ments at other sites have only a modest impact on

those behaviors, and replacements at still other

sites have even less impact on most behaviors.

These facts would tend to ameliorate the extent to

which ambiguity compromises the interpretation
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of data extracted from paleoscience experiments.

Ambiguities in inferred ancestral characters gen-

erally are found at sites that have suffered many

amino acid replacements. Multiple replacements

often (but not always) reflect the possibility of

neutral drift at a site. Neutral drift implies that the

choice of a residue at the site does not have a sig-

nificant impact on fitness. This generally (but not

always) means that replacement of an amino acid at

that site does not have any impact on the behavior

of a protein.

Stringing these together, we might expect that

biologically interpretable behavior will not differ

greatly between ancestral sequences that differ

only at ambiguous sites. To the extent that the

premises are true, ambiguity in general will not

limit our ability to draw inferences about the

behavior of ancestral proteins by experimental

analysis of ancestral sequences, even if our ana-

lysis does not capture all of the ambiguity in those

sequences. This, in turn, means that we will gen-

erally be able to use those behaviors to generate

interesting biological interpretations. In fact,

this is the case with the dozen or so examples of

experimental paleogenetics where the issue has

been examined over the past two decades.

1.7 Alcohol dehydrogenase

The ultimate goal of molecular paleoscience is to

connect the molecular records for all proteins from

all organisms in the modern biosphere with the

geological, paleontological, and cosmological

records to create a broadly based, coherent narra-

tive for life on Earth (Benner et al., 2002). Because

much of natural selection is driven by species–

species interactions, developing this narrative will

require tools that broadly connect genomes from

different species, as well as interconnect events

within a single species. It remains an open ques-

tion, of course, how much of the record has been

lost through extinction, erosion, and poor fossil

preservation.

The literature so far contains only the very first

case studies where such a broad interconnection is

conceivable. For example, modern yeast living in

modern fleshy fruits rapidly convert sugars into

bulk ethanol via pyruvate (Figure 1.1). Pyruvate
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Figure 1.1 The formation of ethanol from glucose by the yeast Saccharomyces cerevisiae is an energetically expensive diversion of carbon in the overall

degradation of glucose to give acetyl-CoA for the citric acid cycle. The yeast genome has two genes that catalyze the ethanol–acetaldehyde inter-

conversion. One (Adh 1) is used to make ethanol; the other (Adh 2) is used to consume ethanol. Why does the yeast genome have these two in the

genome, as either can catalyze this reaction in both directions? Enzymes in italics are associated with gene duplications that, according to the transition

redundant exchange (TREx) clock (Benner et al., 2002), arose nearly contemporaneously. The make–accumulate–consume pathway is boxed. Note that the

shunting of the carbon atoms from pyruvate into (and then out of, open arrows) ethanol is energy-expensive, consuming a molecule of ATP for every

molecule of ethanol generated. This ATP is not consumed if pyruvate is oxidatively decarboxylated directly to give acetyl-CoA to enter the citric acid cycle

directly (open arrow to the right). If dioxygen is available, the recycling of NADH does not need the acetaldehyde-to-ethanol reduction. Reprinted from

Benner, S.A. and Sismour, A.M. (2005) Synthetic biology. Nat. Rev. Genet. 6: 533–543.
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then loses carbon dioxide to give acetaldehyde,

which is reduced by alcohol dehydrogenase 1

(Adh 1) to give ethanol, which accumulates. Yeast

later consumes the accumulated ethanol, exploit-

ing Adh 2 and Adh 1 homologs differing by 24 (of

348) amino acids.

Generating ethanol from glucose in the presence

of dioxygen, only to then re-oxidize the ethanol, is

energetically expensive (Figure 1.1). For each mole-

cule of ethanol converted to acetyl-CoA, a molecule

of ATP is used. This ATPwould not be wasted if the

pyruvate that is made initially from glucose were

delivered directly to the citric acid cycle.

This implies that yeast has a reason, transcending

simple energetic efficiency, for rapidly converting

available sugar in fruit to give bulk ethanol in the

presence of dioxygen. One just-so story to explain

this inefficiency holds that yeast, which is relatively

resistant to ethanol toxicity, may accumulate etha-

nol to defend resources in the fruit from competing

microorganisms (Boulton et al., 1996). While the

ecology of wine yeasts is certainly more complex

than this simple hypothesis implies (Fleet and

Heard, 1993), fleshy fruits do offer a large reservoir

of carbohydrate. This resource must have value to

competing organisms as well as to yeast. For exam-

ple, humans have exploited the preservative value

of ethanol since prehistory (McGovern, 2004).

The timing of Adh expression in Saccharomyces

cerevisiae and the properties of the expressed pro-

teins are both consistent with this story. The yeast

genome encodes two major Adhs that interconvert

ethanol and acetaldehyde (Figure 1.1; Wills, 1976).

The first (Adh 1) is expressed at high levels con-

stitutively. Its kinetic properties optimize it as a

catalyst to make ethanol from acetaldehyde (Fersht,

1977; Ellington and Benner, 1987). In particular, the

Michaelis constant (Km) for ethanol in Adh 1 is high

(17 000–20 000 mM), consistent with ethanol being a

product of the reaction. After the sugar concentra-

tion drops, the second dehydrogenase (Adh 2) is

derepressed. This paralog oxidizes ethanol to

acetaldehyde with kinetic parameters suited for

this role. The Km for ethanol for Adh 2 is low (600–

800 mM), consistent with ethanol at low concentra-

tions becoming its substrate.

Adh 1 and Adh 2 are homologs differing by 24

of 348 amino acids. Their common ancestor,

termed ADHA, had an unknown role. If ADHA

existed in a yeast that made, but did not accu-

mulate, ethanol, its physiological role would pre-

sumably have been the same as the role of lactate

dehydrogenase in mammals during anaerobic

glycolysis: to recycle NADH generated by

the oxidation of glyceraldehyde 3-phosphate

(Figure 1.1; Stryer, 1995). Lactate in human muscle

is removed by the bloodstream; ethanol would be

lost by the yeast to the environment. If so, ADHA

should have been optimized for ethanol synthesis,

as is modern Adh 1. The kinetic behaviors of

KmADH1
KwADH1

KlADH2

Topology #2

KlADH1

KmADH2
SpADH1

ScADH1
SbADH1

SpADH2

SbADH2
ScADH2

SpADH3
ADH A

SbADH3

KlADH4

KlADH3

KwADH4

KwADH3
SkADH4

SkADH3
PsADH1

PsADH2
0.1

ScADH3

SpADH5
SbADH5

ScADH5

SkADH1
SkADH2

Figure 1.2 Maximum-likelihood trees interrelating sequences

determined in this work with sequences in the publicly available database.

Shown are the two trees with the best (and nearly equal)

maximum-likelihood scores using the following parameters estimated

from the data. Substitutions A–C, A–T, C–G, and G–T have a score of

1.00, A–G has a score of 2.92, and C–T has a score of 5.89; empirical

base frequencies, and proportion of invariable sites and the shape

parameter of the gamma distribution are set to 0.33 and 1.31,

respectively. The scale bar represents the number of substitutions/codon

per unit of evolutionary time. Reprinted from Benner, S.A. and Sismour,

A.M. (2005) Synthetic biology. Nat. Rev. Genet. 6: 533–543.
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ADHA should resemble those of modern Adh 1

more than Adh 2, with a high Km for ethanol.

To add paleobiochemical data to convert this

just-so story into a more compelling scientific

narrative, a collection of Adhs from yeasts related

to S. cerevisiae was cloned, sequenced, and added

to the existing sequences in the database (Thomson

et al., 2005). A maximum-likelihood evolutionary

tree was constructed using PAUP*4.0 (Figure 1.2;

Swofford, 1998). Maximum-likelihood sequences

for ADHA were then reconstructed using both

codon and amino acid models in PAML (Yang,

1997). When the posterior probability that a par-

ticular amino acid occupied a particular site was

>80%, that amino acid was assigned at that site in

ADHA.

When the posterior probability was <80% and/

or the most probabilistic ancestral state estimated

using the codon and amino acid models were not

in agreement, the site was considered ambiguous,

and alternative ancestral genes were considered.

For example, the posterior probabilities of two

amino acids (methionine and arginine) were nearly

equal at site 168 in ADHA, three amino acids

(lysine, arginine, and threonine) were plausibly

present at site 211, and two (aspartic acid and

asparagine) were plausible for site 236.

Figure 1.3 shows some of the reason for the

ambiguities at sites 168 and 211. As can be seen by

the placement of characters (here, amino acids) on

the leaves of the trees, it is difficult to infer the

ancestral character for the node at the right end of

the branch in the tree marked by * in Figure 1.3,

representing the last common ancestor of Adh 1

and Adh 2. In part, the difficulties arise because of

homoplasy, a historical phenomenon where the

same amino acid replacement occurred more than

once at different times in the family’s history. This

suggested that selective constraints were influen-

cing the selection of amino acids at those sites. This

ambiguity could therefore not be ignored.

To handle these ambiguities, all 12 (all 2� 2� 3

combinations) candidate ADHAs were resurrected

by constructing genes that encoded them, trans-

forming these genes into a strain of S. cerevisiae

from which both Adh 1 and Adh 2 had been

deleted, and expressing them from the Adh1 pro-

moter. All of the ancestral sequences could rescue

the double-deletion phenotype in the expression

yeast.

KmADH1  K
KwADH1  K

KlADH2  K
KlADH1  K

KmADH2  K

SkADH1  R
SkADH2  R

SpADH1  M

SpADH2  R

SpADH3  K

ScADH3  K

ScADH5  I

SpADH5  I
SbADH5  I

SbADH3  K

ScADH2  R
SbADH2  R

ScADH1  M
SbADH1  S

R? K?

K

Homoplasy

*

KmADH1  K
KwADH1  K

KlADH2  K
KlADH1  K

KmADH2  K

SkADH1  K
SkADH2  N

SpADH1  R

SpADH2  T

SpADH3  K

ScADH3  K

ScADH5  E

SpADH5  E
SbADH5  E

SbADH3  K

ScADH2 T
SbADH2  T

ScADH1  R
SbADH1  R*

Figure 1.3 The distribution of amino acids at site 168 (left) and site 211 (right) in a set of 19 fungal alcohol dehydrogenases. The node of interest is

at the right end of the branch marked by *. Note the difficulty in reconstructing the amino acids at these sites at the node at the right end of the

red branch.
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Table 1.1 lists kinetic data from the candidate

ancestral ADHAs (Thomson et al., 2005). Simple

kinetic metrics were then used to assess the quality

of the data. In particular, the Haldane equation

relates the equilibrium constant for the Adh reac-

tion with various of the measured kinetic para-

meters according to the equation (Segal, 1975).

Keq ¼ VfKiqKp=VrKiaKb

where Vf and Vr are forward and reverse maximal

velocities, Kia and Kiq are disassociation constants

for NADþ and NADH, and Kb and Kp are

Michaelis constants for ethanol and acetaldehyde,

respectively. These parameters were calculated

from the experimental data. The Haldane equation

reproduced the literature equilibrium constant

for the reaction to within a factor of two. One

variant, termed MTN (for the amino acids at

sites 168, 211, and 236), had very low catalytic

activity in both directions. This suggested that this

particular candidate ancestor was not the true

ancestor.

Significant to the hypothesis, the kinetic prop-

erties of the candidate ancestral ADHAs resembled

those of Adh 1 more than Adh 2 (Table 1.1). This

included the high Km for ethanol, a sign of an

ancestor that did not have ethanol at low con-

centrations as its physiological substrate. From this

observation, Thomson et al. (2005) inferred that the

ancestral yeast did not have an Adh specialized for

the consumption of ethanol, like modern Adh 2,

but rather had an Adh specialized for making

ethanol, like modern Adh 1. This, in turn, sug-

gested that the ancestral yeast prior to the time

of the duplication did not consume ethanol.

This implied that the ancestral yeast also did not

make and accumulate ethanol under aerobic con-

ditions for future consumption, and that the make–

accumulate–consume strategy emerged after Adh

1 and Adh 2 diverged. These interpretations were

robust with respect to the ambiguities in the

reconstructions.

Several details are worthy of further comment.

FormodernAdh1, the ranges of literatureKmvalues

were 17 000–24 000 mM for ethanol, 170–240 mM
for NADþ , 1100–3400 mM for acetaldehyde, and

110–140 mM for NADH (Ganzhorn et al., 1987).

These comparisons, together with the Haldane

analysis, provide a view of the experimental

error in the kinetic parameters reported in

the paleoreconstruction. The interpretations

about the kinetic behavior of the ancient ADHA

are based on differences well outside of experi-

mental error.

Further, when paralogs are generated by dupli-

cation, many believe that the duplicate that then

evolves more rapidly is the one that acquires the

new functional role (Kellis et al., 2004). If this were

generally true, one might identify the functionally

innovative duplicate by a simple bioinformatics

Table 1.1 Kinetic properties of Adh 1, Adh 2, and candidate

ancestral ADHAs. Reprinted from Benner, S.A. and Sismour, A.M.

(2005) Synthetic biology. Nat. Rev. Genet. 6: 533–543.

Samplea Km (������M)

Ethanol

NAD+ Acetaldehyde NADH

Adh1 20 060 218 1492 164

MKD 17 280 511 1019 144

MKN 13 750 814 1067 1106

MRD 11 590 734 1265 287

MRN 10 960 554 1163 894

MTD 10 740 467 959 190

MTN N/A N/A N/A N/A

RKD 8497 449 1066 142

RKN 7238 407 1085 735

RRD 7784 400 1074 203

RRN 8403 172 1156 1142

RTD 6639 254 1083 316

RTN 7757 564 1158 477

Adh1b 24 000 240 3400 140

Adh1c 17 000 170 1100 110

Adh2b 2700 140 45 28

Adh2c 810 110 90 50

Adh3c 12 000 240 440 70

Adh1c (S. pombe) 14 000 160 1600 100

Adh1(M270L)c 19 000 630 1000 80

KlP20369d 27 000 2800 1200 110

KlX64397d 23 000 2200 1700 180

KlX62766d 2570 310 100 20

KlX62767d 1560 200 3100 30

aThe three letters in the sample names designate the amino acids at

positions 168, 211, and 236; thus MKD is Met-168, Lys-211, Asp-236. The

remaining residues were the same as in Adh 1, except for the following

changes (using sequence numbering of Adh1 from S. cerevisiae): Asn-15,

Pro-30, Thr-58, Ala-74, Glu-147, Leu-213, Ile-232, Cys-259, Val-265,

Leu-270, Ser-277, and Asn-324. Kl, Kluyveromyces lactis; N/A,

not applicable; S. pombe, Schizosaccharomyces pombe.
bFrom Thomson (2002).
cFrom Ganzhorn et al. (1987).
dFrom Bozzi et al. (1997).
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analysis. Whereas this may be true for many genes,

chemical principles do not obligate this outcome,

and it is not true with these Adh paralogs.

Here, the rate of evolution is not markedly faster in

the lineage leading to Adh 2 (having the derived

behavior) than in the lineage leading to Adh 1

(having the primitive behavior). The paleo-

biochemistry experiment was necessary to assign

the primitive behavior.

Further, the Haldane ratio relates various kinetic

parameters (Kcat, Km, KdissÞ that can change via a

changing amino acid sequence to the overall

equilibrium constant, which the enzyme (being a

catalyst) cannot change. Thus, if a lower Km for

ethanol is selected, other terms in the Haldane

must change to keep the ratio the same. This is

observed in data for the ancestral proteins pre-

pared here and the natural enzymes.

1.8 Interconnecting models

By the end of the current century, we can expect

that the divisions between branches of biology

(molecular, cell, systems, organismic, environ-

mental, geo-, and astro-biology) will be subsumed

within a broad model of the phenomenon we

know as life. This will include, of course, the

products of the reductionist paradigm that has

placed chemical structures upon many of the

phenomena unique to biology, including genetics,

emergent behavior, Darwinian evolution, and

functional complexity. It will also incorporate the

products of the reductionist paradigm that uses

mathematical models to describe the interaction

between individuals in a population and different

organisms within an ecosystem.

But it will also include a history of the biosphere

based on the geological, paleontological, and gen-

omic records. This history will be needed to address

the questions of why and how in biology. Here, the

answers will come in the form of narratives that

describe historical events that fashioned the mol-

ecules, cells, systems, organisms, and environments

for individual biomolecules. There will be little room

for statistics in thismodel.Rather, the individual traits

of individual systems will be understood as the pro-

ducts of chance, necessity, and vestigiality interacting

under constraints from physical law.

Further, this model will be heuristic. It will

avoid the epithet of being a just-so story by having

multiple lines about many systems on Earth that

interconnect and intercorrelate in a comprehensive

model for the history of the planet, the life that it

holds, and the chemistry behind that life. Further,

it will depend on the synthesis of ancestral

forms to test its heuristics, where experimental

paleoscience will repeatedly require the revision of

the heuristics.

It is possible to combine the data that were

available before the experimental paleoscience

done with the Adh system, the data on ADHA

from the experiments described here, and subse-

quently emerging information, to set us on this

path to this complex, intercorrelated, and inter-

connected future for this individual system. We

might begin by asking whether the Adh 1/Adh 2

duplication and the accumulate–consume strategy

that it presumably enabled became fixed in the

yeast population in response to a particular select-

ive pressure?

Hypothetically, the emergence of a make–

accumulate–consume strategymay have been driven

by the domestication of yeast by humans selecting

for yeast that accumulates ethanol. Alternatively,

the strategy might have been driven by the emer-

gence of fleshy fruits that offered a resource worth

defending using ethanol accumulation. We might

distinguish between the two by estimating the date

when the Adh 1/2 duplication occurred. Even

with large errors in the estimate, a distinction

should be possible, as human domestication

occurred in the past million years, while fleshy

fruits arose in the Cretaceous, after the first

angiosperms appeared in the fossil record

125million years ago (Sun, 2002), but before the

extinction of the dinosaurs 65million years ago

(Collinson and Hooker, 1991; Fernandez-Espinar

et al., 2003).

The topology of the evolutionary tree in

Figure 1.2 suggests that the Adh 1/Adh 2 dupli-

cation occurred before the divergence of the sensu

strictu species of Saccharomyces (Fernandez-Espinar

et al., 2003), but after the divergence of Sacchar-

omyces and Kluyveromyces. The date of divergence

of Saccharomyces and Kluyveromyces is unknown,

but might be estimated to have occurred
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80�15million years ago (Berbee and Taylor, 1993).

This date is consistent with a transition-redundant

exchange (TREx) clock (Benner, 2003), which

exploits the fractional identity (f2) of silent sites in

conserved 2-fold-redundant codon systems to

estimate the time since the divergence of two

genes. Between pairs of presumed orthologs from

Saccharomyces and Kluyveromyces, f2 is typically

0.82, not much lower than the f2 value (0.85)

separating Adh 1 and Adh 2 (Benner et al., 2002),

but much lower than paralog pairs within the

Saccharomyces genome that appear to have arisen

by more recent duplication (approx. 0.98; Lynch

and Conery, 2000).

Interestingly, Adh 1 and Adh 2 are not the only

pair of paralogs where 0.80< f2< 0.86 (Benner

et al., 2002). Analysis of approximately 350 pairs

of paralogs contained in the yeast genome (con-

sidering pairs that shared at least 100 silent sites,

and diverged by less than 120 point-accepted

replacements per 100 sites) identified 15 pairs

having 0.80< f2< 0.86 (Figure 1.4). These represent

eight duplications that occurred near the time of

the Adh 1 and Adh 2 duplication, if f2 values are

assumed to support a clock.

These duplications are not randomly distributed

within the yeast genome. Rather, six of the eight

duplications involve proteins that participate in

the conversion of glucose to ethanol (Table 1.2).

Further, the enzymes arising from the duplicates

are those that appear, from expression analysis, to

control flux from hexose to ethanol (Schaaff et al.,

1989; Pretorius, 2000). These include proteins

that import glucose, pyruvate decarboxylases

that generate the acetaldehyde from pyruvate,

the transporter that imports thiamine for these

decarboxylases, and the Adhs (the italicized pro-

teins in Figure 1.1). If the f2 clock (within its

expected variance) is assumed to date paralogs in

yeast, this cluster suggests that several genes other

than Adh duplicated as part of the emergence of

the new make–accumulate–consume strategy, near

the time when fleshy fruit arose.

The six gene duplications proposed to be part of

the emergence of the make–accumulate–consume

strategy (in the 0.80< f2< 0.86 window) are not

associated with one of the documented blocks of

genes were duplicated in ancient fungi, possibly as

part of a whole-genome duplication (Wolfe and

Shields, 2001). Two duplications in genes that are

0.4
0

10

20

30

40

N
um

be
r 

of
 g

en
e 

d
up

lic
at

io
ns

0.6 0.8
f2

1

Figure 1.4 A histogram showing all of the pairs of

paralogs in the S. cerevisiae genome, dated using the

transition redundant exchange (TREx) tool (Benner, 2003).

The episode of gene duplication where 0.80< f 2< 0.86 is

isolated from more ancient duplications (the mode of the

distribution at the left) and more recent duplications

(represented by the bars at the very right of the plot).

Paralog pairs are considered only if they have with at least

100 aligned silent sites, and are not separated by more than

120 point-accepted mutations per 100 aligned amino acid

sites (PAM units). Reprinted with permission from Benner

et al. (2002) Planetary biology: paleontological, geological,

and molecular histories of life. Science 296: 864–868,

# 2002 AAAS.
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not associated with fermentation that fall in the

0.80< f2< 0.86 window are part of a duplication

block (see Table 1.2). The silent sites for most gene

pairs associated with blocks are nearly equilibrated

(with the prominent exception of ribosomal pro-

teins), and therefore suggest that most blocks

arose by duplications more ancient than dupli-

cations in the 0.80< f2< 0.86 window. Therefore,

the hypothesis that a set of six time-correlated

duplications (Table 1.2) generated the make–

accumulate–consume strategy in yeast near the time

when fermentable fruit emerged is not inconsistent

with the whole-genome-duplication hypothesis.

This bioinformatics extends the paleoscience

experiments across the yeast genome. As of today,

this may not convert the story that the paleoscience

experiments told into an acceptable narrative. But

having a dozen gene duplications correlating with

the result from the paleoexperiment helps. The

next step is to extend this narrative. If the yeast

genome shows evidence of this ecosystem innov-

ation, then so should the genomes of the plants

making the fruit, the fruit flies laying eggs in the

fermentable fruit, moving down and up in the

ecosystem. The end of the Cretaceous saw, in

addition to the emergence of fruits, the extinction

of the dinosaurs and the emergence of mammals

and fruit flies (Baudin et al., 1993; Ashburner, 1998;

Barrett and Willis, 2001). For example, females of

different fruit fly species position their eggs in

fruits with different levels of fermentation (Hou-

gouto et al., 1982). Further, the impact of the

introduction of alcohol into the ecosystem should

have had impact on microorganisms other than S.

cerevisiae that had contact with alcohol-rich media.

Likewise, many organisms other than S. cerevisiae

participate in alcoholic fermentation before yeast

takes over. In rotting fruits, S. cerevisiae becomes

dominant after fermentation begins, while osmotic

stress and pH, as well as ethanol, appear to inhibit

the growth of competing organisms (Pretorius,

2000). Whereas the genomes of organisms that par-

ticipate in the initiation of fermentation are not yet

available, should they become so, they too can be

examined for evidence of adaptive change.

Adding more information will not provide

proof. Again, proof is not accessible in the real

world. This means that at no point will the

narrative evolve to the point where someone who

is committed to disagreeing with the narrative not

have the option to find a reason not to believe it.

This was shown by the experiences with the non-

classical carbocation and neutralist/selectionist

dispute. But there is only one history of life on

Earth. As enough lines of evidence converge on the

model, interconnecting enough threads from

chemistry, systems biology, ecology, and planetary

science, the model will converge. And eventually

the model building will end (Galison, 1987).
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