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Surface residues, interior residues, and parsing residues, together with a secondary structure derived from these, are predicted for the MoFe

nitrogenase protein in advance of a crystal structure of the protein, scheduled shortly to appear in Nature. By publishing this prediction, we test

our method for predicting the conformation of proteins from patterns in the divergent evolution of homologous protein sequences in a way that
places the method ‘at risk’.
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1. INTRODUCTION

We have recently developed procedures for extracting
conformational information from patterns in the diver-
gence and conservation in the sequences of homologous
proteins [1]. These procedures are based on models for
the divergent evolution of behavior and structure of
proteins [2-4]. The procedures have been used to predict
various aspects of the conformation of several protein
families [1,5]. In the cases of protein kinase [6] and the
Src homology domain 3 [7,8], secondary structure pre-
dictions were made before crystallographic data became
available and shown to be remarkably accurate by sub-
sequently determined crystal and NMR structures [9-
12].

The best way to test the power of structure prediction
procedures is to apply them to make predictions in ad-
vance of experimental information concerning confor-
mation. To be useful, the predictions must be published.
This ensures that knowledge of the structure cannot
bias the prediction, the predictions (both correct and
incorrect) are visible, and the method is placed ‘at risk’,

" The only problem is one of coordination. A prediction
published years in advance of an experimental structure
is uninteresting. A prediction made even days after a
structure becomes available to the predictor is useless.

In the October 29, 1992 issue of Nature [7], we invited
scientists to send sequences to use as prediction targets
for our procedure for proteins (a) the structure of which
shortly will be solved, (b) where no structure is available
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for any obviously homologous protein, (c) where a set
of homologous sequences are available, (d) where these
sequences are sent to us by computer mail together with
a few literature citations that provide an overview of the
chemistry and biology of the protein family, and (e)
when enough time is available to allow coordination of
the publication of the prediction and publication of the
structure. This Letter reports our first efforts directed
towards this end.

Our first task has been to address challenges where
criterion (e) was not fully met. For example, on Novem-
ber 16, Prof. D.C. Rees from the California Inititute of
Technology challenged us to predict a secondary struc- -
ture for the MoFe protein of nitrogenase. He noted that
the crystal structure of this protein had been solved, and
that a manuscript coauthored with J. Kim describing
that structure was in press in Nature, scheduled to ap-
pear in the week of December 14, 1992,

Four weeks is insufficient time to assemble a com-
plete model for the conformation of any protein family.
Nevertheless, the nitrogenase is an‘extremely interesting
target. It is a large protein and it plays a critical role in
an important metabolic process. Therefore, we have
used the available time to assemble a first stage predic-
tion of the secondary structure of this protein family.
The prediction turns out to be especially instructive for
those seeking to apply our procedures to their own
proteins. Further, when this Letter appears in print, the
issue of Nature containing the crystal structure will be
in the library, and the success of the prediction can be
immediately determined.

2. RESULTS
In presenting this prediction, we address one criticism
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of our procedure transmitted to us by established work-
ers in the area: that it is inferior because it is not fully
automated, and relies in part on the experimence and
training of individuals making the prediction. As noted
elsewhere. we do not find this criticism particularly
evincing [1,2,6,12]. Conformational analysis in proteins
is not fundamentally different from conformational
analysis in other branches of organic chemistry, and no
predictive problem in conformational analysis in chem-
istry has yet been solved, even for small molecules, by
a fully automated procedure in the century during
which conformational analysis has been developed.
Rather, problems in conformational analysis are solved
in chemistry by first developing a formalism. The for-
malism is then applied by humans to real problems. In
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this application, experience, training and intuition can
make contributions, errors can be understood, and the
formalism can be rationally improved. Organic chemi-
cal analyses can be taught, reproducibly applied, any
subjected to critical testing, as any student in an under-
graduate chemistry course can confirm. Of course, it is
difficult to apply methods designed to evaluate auto-
mated prediction heuristics to the prediction heuristics
obtained by an organic chemical paradigm. This is one
reason why de novo predictions, such as the one pre-
sented here, are so important in developing the predic-
tive formalism.

To illustrate this point, the prediction in Fig. 1 is
broken into several parts. For surface, interior, parsing,
and active site assignments, the first line (TJ) reports
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Fig. 1 (lst part).
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Fig. 1 (2nd part).

Fig. 1. Multiple alignment of the beta subfamily of the MoFe nitrogenase protein. Sequences are from the SwissProt protein sequence database
using the DARWIN system, Underscores denote insertions and deletions. Dashes indicate sequences with insufficient similarity to permit alignment.
Parsing strings (see text) are underlined, Proteins in subbranches in the evolutionary trec are denoted by blocks of sequences. Letters preceding
lines indicate the nitrogenase with the following accession numbers in the dutabase: a (P16267); b (PO0468); ¢ (P25314); d (P07329); e (P20621);
(P06122); g (P11347); h (PO97TL); i (P09772); j (P10336); k (P26507); I (PO8738); m (P12781); n (P19077); 0 (P15334); p (P16856); xx (P15052).
The highest bridge in the evolutionary tree occurs at a PAM (accepted point mutation per 100 amino acid residues) distance of 173.

Lines beginning with a number indicate the following.

Line 1: *” for a conserved amino acid, *." for a conserved amino acid type.

Lines 2-5: I and i designale strong and weak interior assignments. S and s designate strong and weak surface assignments. P and p designate
strong and weak parsing assignments. X designates a split in polarity type. / designates a functional split. $ designates a conserved functional residue
potentially part of an active site string. For discussion of these terms, see ref. 6. Line 2 shows unrefined assignments made by a computer ‘expert
system’ on an unrefined alignment omitting sequence xx. Gaps arise from subsequent alignment refinement. Assignments are ussociated with a
numerical probability (not indicated) that influenced the inferred secondary structures. Lines 3 and 4 show primary and secondary assignmenls
made with computer assistance by an expert (S.A.B.) applying various heuristics by hand. Line 5 shows assignments made independently by a second
expert (D.L.G.) applying various heuristics by hand.

Lines 8-11: A and a designate strong and weak « helix assignments. B and b designate strong and weak f strand assignments. o and f assignments
were made independently and recorded on separate lines. TJa and TJb (lines 6 and 7) are a and f§ assignments made by rigorous application of
secondary structure assignment heuristics using input from the expert system. DGa, DGb, SBa, and SBb (lines 8, 9, 10, and 11) are ¢ and §
assignments made by two experts (D.L.G. and S.A.B.) applying various heuristics by hand.

Line 12: a consensus secondary structure prediction to be compared with the crystul structure when it becomes availuble. Symbols

with C designating coil/turn assignments.

as above,
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Fig. 1 (3rd part).

those made by a fully automated package that is essen-
tially an ‘expert system’ attempting to reproduce assign-
ments made by organic chemists using experience, train-
ing and intuition applying procedures described in de-
tail elsewhere [1,2,5,6,11]. This is the first time this pack-
age has been applied. The second, third and fourth lines
reflect two sets of predictions prepared independently
by two experts (D.G. and $.B.). A comparison of these
lines illustrates the range of assignments made when
relying on the experience, training, and intuition of indi-
vidual scientists.

Secondary structure predictions, derived from pat-
terns in surface and interior assignments, are likewise
assigned separately, first by a rigorously applied heuris-
tic (TJa and TJb, for o and assignments) and then by

two experts acting independently. The final line con-
tains the consensus of all three predictions resulting
from discussion among the experts, with the computer
prediction represented by an expert (T.1.) as well. Spe-
cial emphasis was placed on identifying core secondary
structural units, as these are the most critical in assem-
bling a tertiary structure model. Finally, an additional
sequence {labeled xx) was introduced later into the mul-'
tiple alignment to illustrate the extent to which assign-
ments might be altered by additional sequence informa-
tion.

A new procedure was used to help identify ‘breaks’
(or ‘parses’) in the secondary structure of a protein. In
this procedure, dipeptides in the sequence composed of
Pro, Gly, Asp, Asn, Ser, or any combinations of these
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were identified as ‘parsing strings’. Further description
of the use of parsing strings as indicators of breaks in
secondary structure will be presented elsewhere.

3. DISCUSSION

The first stage prediction used a multiple alignment
of one family (the § family) of the MoFe protein of
nitrogenases only. A second stage prediction would in-
clude input from the second, more distantly homolo-
gous, o family, which aligns satisfactorily over part of
the sequence. Preliminary study of the a family yielded
secondary structure predictions that strongly confirm

several predictions made in the first family (e.g., the ¢

helix assigned to positions 131-142). The comparison
does not, however, help define the conformation of the
unusually structured (yet certainly important, judging
by a variety of sequence features) stretch from positions
165-200.

Further, the alignment was subjected only to minimal
revision. In a second stage prediction, revised versions
of the multiple alignment would be considered in an
effort to optimize secondary structural assignments.
Further, in this first stage prediction, neither a su-
persecondary nor a tertiary structure was modeled, nor
did we use information available regarding the active
site of the enzyme, the subunit structure, or the biolog-
ical function of this enzyme [13]. These procedures often
help identify errors in the secondary structure predic-
tion [6). There was, regrettably, too little time.

A certain number of inconsistencies can undoubtedly
be found in the figure, again due to a shortage of time.
The authors welcome inquiries, as well as additional
sequences for prediction. :

NOTE ADDED IN PROOF: JANUARY 4, 1992

At the Editor’s request, we have compiled recently
published crystallographic data for the MoFe nitroge-
nase protein from Azotobacter vinelandii [14] in a form
that allows them to be compared with a first stage pre-
diction for the protein family (Fig. 1), completed before
the crystallographic data were available. Three points
are important.

First, we normally do not publish discussions of our
own predictions [12] until after they have been evaluated
by others. Premature evaluations by predictors of their
own predictions encourage a certain type of criticism
that can obscure important science, no matter how cir-
cumspect these evaluations might be. Thus, our predic-
tion of protein kinase [6] was evaluated first by the
crystallographers who solved the structure [9], by
Thornton et al. [15], and then briefly by Lesk and
Boswell [16). For the SH3 domain prediction, a sum-
mary of the prediction was evaluated by Sander [17] (the
prediction paper was not available to the evaluators
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when they made their evaluation); an editorial evalua-
tion of the full prediction will appear simultaneously
with the prediction paper [8].

Second, our central message [1] is that the organic
chemist’s research strategy, where a scientist actively
applies a chemical formalism during the prediction
process, is more likely to yield useful results than one
focusing on obtaining automated computational meth-
ods. This means that methods designed to evaluated
automated predictions are often deceptive when applied
to predictions made using other research paradigms.
With a prediction method based on a chemical formal-
ism, it is appropriate to ask why a secondary structure
assignment is correct (if it is correct), or why iti s incor-
rect (if it is incorrect). This is especially true for a first
stage prediction (Fig. 1). Fig. 2 shows several points
where the prediction was influenced by gaps, problema-
tic alignments, ambiguous patterns in surface and inte-
rior assignments, and other issues often resolved during
refinement (reference [6] discusses refinement proce-
dures). As noted above, there was insufficient time to
address any of these issues.

Third, evaluating predictions made from multiple
alignments raises issues that are central to the field, not
peripheral as this short note might imply. A structural
model for a family of proteins does not apply exactly to
any individual family member, and it is not always clear
how to correlate a ‘consensus’ model to the conforma-
tion of an individual protein. It is clear, however, that
consensus models are best evaluated using more than
one experimental structure, as illustrated by the exam-
ple of the SH3 domain [10,11].

Overall, the results for the MoFe nitrogenase protein
are typical for a first stage unrefined prediction. Helix
assignments are normally rather accurate; f-strands are
less so. Problems are often encountered in unrefined
predictions when assigning secondary structure near the
active site {e.g. the first line of Fig. 2). Here sequence
divergence is dominated by functional constraints relat-
ing to catalytic function, obscuring patterns that indi-
cate particular types of secondary structure.

We ourselves evaluate a first stage prediction by
grouping the assigned units in 7 categories: ‘correct’ (a
predicted secondary structure unit that would not ad-
versely affect an effort to build a tertiary structure
model), ‘possibly correct’ (a predicted secondary struc-
ture unit whose effect on a tertiary structure model
depends on context), ‘wrong’ (a helix assigned as a
strand, tabulated as an incorrect strand assignment, or
a strand assigned as a helix, an incorrect helix assign-
ment), ‘missed significant’ (a helix or strand not identi-
fied in a region that does not contain a gap, and where
the missed unit is important to a tertiary structural
model), ‘missed insignificant’ (a helix or strand not
identified in a region that does not contain a gap, but
where the missed unit does not appear important to
building a tertiary structure), ‘gapped’ (a helix or strand
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Align # 65 70 5 80 85 30 95 100 105 110 115 120 125 130
t . { i | | i . |

Seq TVNPAKACQPLGAVLCALGFEKTMPYVHGSQGCVAYFRSYFNRHFREPVSCVSDSMTEDAAVFGGQQ
predict BBBBB CBBBBB CC BBB cce cCcc  cce BBBBCC A
Cryst ..BBB AAARRAAAAAR BEBBBBB AAAAARAARARARA BBBBBBB AAAAAA AR
. t . t - I . | - 1 . ! .
Cryst # 70 80 90 100 110 120
Align # 140 145 150 155 160 165 176 175 180 185 190 195 200
. 1 . ! . | . | . t . . ]
Seq NMKDGLQNCKATY_KPDMIAVSTTCMAEVIGDDLNAFINNSKKEGFI PDEFPVPFAHTPSFVGSH
predict AARAARARARA cc BBBB cceeece cceee cC cC CCA
Cryst AAAAAARAARARR BBBBBBBBAAAAAR AAARAARAAAA BBBBBBBEB A
. | - { . t . I . | . |
Cryst #130 140 150 160 170 180 190

Align # 205 210 215 220 225 230 235 240 245 250 255 260 265 270
I . 1 . [ . i . | [ . I

Seq VTGWDNMFEGIARYF T LKSMDDKVVGSNKKINIVPGFETYL__QNFRVIKRMLSEMG
predict AAAAAAARAARAAAA unassigned due to gaps BBBBB CCCCCCCCC EAAAAAAAAARA
Cryst AAAAAAAAAAAAARA A BBBBBBB A AARMAAAAAAARA

- | . | . | . i - l .
Cryst # 200 210 220 230 240

Align # 275 280 285 290 295 300 305 310 315 320 325 330 335 340
|

. . 1 - { . | . | . { . I
Seq VGYSLLSDPEEVLDTPADGQ_FRMYA_GGTTQEEMKDAPNALNTVLLOPWHLEKTKKFVEGTWKHEVPKL
predict- CCCCCCCCCCCC  CCCC AAMRMRARA CC BBBEB AAAAAAARRARAA CCCCC
Cryst BBBBBBB AARAA AAAAAAAAA BBBBB AARAAAZARAA BBBBBB
. ] - | . | . | . | . i
Ccryst # 250 260 270 280 290 300 310

Align # 345 350 355 360 365 370 375 380 385 390 395 400 405 410
I . ! . 1 - 1 - |
ERGRLVDMMTD_SHTWLHGKRFALWGDPDFVM

Seq NIPMGLDWTDEFLMKVSBISG_QPIPASLTK

Predict CcC AARAAAAAARA CCCCCC C AAAAAAAAARCCRBBBBB 3BBB CCC

Cryst B AAAARAAAAARADA ARARA AAARRAARAAAR ARAAA BE3BBBB AAAAA
[ . | . I . | . t . I .

Cryst # 320 330 340 350 360 370

Align # 415 420 425 430 435 440 445 450 455 460 465 470 475 480

. i . i . i . | . | . i . i

Seg GLVKFLLELGCEPVHILCH~NGNKRWKKAVDAI LAASP YGKNATVY IGKDLWHLRSLVETD

predic AAAARRARAAARA BBBBB CCCC unassigned due to gaps AAAAAARA C

Cryst AARAAAARA BBBBBBBB AAAAARAARA AAA BBBBEB AARARAARR
. | . I - I - i . i

cryst # 380 330 400 410 420 430

Align # 485 450 495 500 505 510 515 520 525 530 535 540 545
. § . { - . t . | . | .
Seq __KPDFMIGNSYGKFIQRDTLHKGKEFEVPLIRIGFPIFDRHHLHRSTTLGYEGAMQILTTLVNSILB

predic CCC BBBB unass. gaps BBBBBB BEB BBBB AAAAARMAARARAAA

Cryst PBREBBAAAAAAAAAARRAA  BBBBBBB AARA ARAAAKAAAAAARRAR
| . | - 1 . | . | . 1 . |

Cryst # 440 450 460 470 480 490 o 500

March 1993

Fig. 2. The sequence of the MoFe nitrogenase protein from Azofobacter vinelandii, numbered according to the multiple alignment in Fig. 1, followed

by the first stage, uarefined secondary structure prediction (Fig. 1) and the secondary structure assigned by crystallography [14]. A =

ahelix, B=f

strand, C = coil or turn. Beneath is the sequence numbering of the MoFe nitrogenase protein from Azotobacter vinelandii, the protein the crystal
structure of which was solved (sequence d in the multiple alignment in Fig. 1). Positions not designated A, B, or Cin the prediction are left blank;
non-assignments are ‘canonical’ in a first stage prediction whenever the multiple alignment includes a gap and whenever the ‘expert’ assignments
disagree. See references [1], [6) and {12] for further discussion of canonical assignments in a first stage prediction and procedures used for refining

these predictions.
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Table [

Secondary structure of the MoFe nitrogenase protein: comparison of
the prediction and the crystal structure

a helices B strands
Correct 10 7
Possibly correct 0 2
Wrong 0 3
Missed significant 3 4
Missed insignificant 3 0
Gapped 2 i
Overpredicted 0 2

not identified because of the canonical treatment of
gaps [6,12]), and ‘overpredicted’ (a helix or strand as-
signed to a region left unassigned by the experimental-
ists). These numbers for the MoFe nitrogenase protein
are collected in Table I. Note that these are preliminary
assignments; precise assignments can be made only in
the context of an effort to assemble a tertiary structure
model, which necessarily follows refinement.

Above all, this comparison illustrates the importance
of early communication between crystallographer and
predictor to ensure that adequate time is available for
refinement. We are unable to say how much our predic-
tion would have been improved by refinement. How-
ever, adjustments made to the multiple alignment, a
standard part of a refinement procedure, should at least
have allowed detection of some of the secondary struc-
tures in the regions left unassigned due to gaps (see Fig.
2). More challenging would have been improvement of
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the secondary structure prediction in the region of the
active site.
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