
  

 STEPHEN P SUGRUE | Change Password | Change User Info | CiteTrack Alerts | Subscription Help | Sign Out 

 

Unite Efforts and Conquer Mysteries of Artificial 
Genetics 

In his News Focus article "Creation's seventh day" (14 Jul., p. 232), Robert F. 
Service highlights some recent work in artificial genetics, emphasizing the 
controversy that might surround "a new life form" and the distinctive personalities 
of some scientists who have taken up the challenge. Entertaining reading, of 
course, but amid the discussion of personalities it remains most important to 
identify ways that artificial genetics might change the landscape of science. Here 
are just two. 

First, why is it so difficult to move in vitro artificial genetics into a living cell? 
Buried in this question are the mechanisms by which living systems achieve 
precision when precision is important--in particular, in DNA replication (1, 2). 
Efforts to implement artificial genetics show that we understand far less about the 
enzymology and chemistry of precision than we thought (2), especially where 
DNA is involved. Second, since the Enlightenment, science has divided itself into 
two traditions, one from natural history, the other known as "physical science." 
Explanations in natural history use models of the past, consistent with physical 
laws, but not determined by them. Physical science explanations use universal 
models of atomic structure or mathematics. The two traditions are often adversarial 
in the culture, in academic departments, and (consequently) in education. Research 
in artificial genetics shows that if these two traditions can be joined, the combination has great power (3). For 
example, precision in biology will be better understood when we understand the history through which precision 
evolved. But only a few U.S. research laboratories have the advantage of moving smoothly from geology to 
evolution to chemistry to informatics. How should we join these traditions? A challenge, for sure.  
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MOLECULAR BIOLOGY: 
Creation's Seventh Day 

Robert F. Service 

What would life look like if DNA contained more than four nucleotide bases 
and proteins more than 20 amino acids? Peter Schultz aims to find out 

In the casino or in the lab, Peter Schultz loves to take risks. "If I gamble, I usually 
gamble at high-stakes, high-payoff games," Schultz says. "Science is interesting 
when it's played at the same level, for the highest stakes with very high risk." For 
Schultz, a chemist at the Scripps Research Institute and the director of the newly 
created Genomics Institute of the Novartis Research Foundation (GNF), both in La 
Jolla, California, that betting system has paid handsomely. 

While at his previous home at the University of California (UC), Berkeley, Schultz 
helped pioneer a fleet of high-speed chemistry techniques to generate molecules by 
the millions and select the ones that work best as possible catalysts, drug 
molecules, and even high-temperature superconductors. During the 1990s, he 
parlayed that experience into a string of start-up companies. Last year he took 
another big gamble by giving up the comfort of his Berkeley career and financial 
backing by the Howard Hughes Medical Institute to launch GNF, an outfit Schultz 
pitches as the "Bell Labs of Biology," which aims to work out the function of the 
thousands of unknown genes being turned out by the world's genome projects (see 
sidebar).  

Still, his boldest undertaking--and the one that may ultimately have the highest 
impact--may lie in academic research: With colleagues at Scripps, Schultz is 
aiming to rewrite the basic chemistry of life. By reengineering DNA, RNA, and the 
proteins that interact with them, they hope to create synthetic organisms with a 
chemical makeup fundamentally different from all life that has existed on Earth for 
the last 3.8 billion years.  

If they succeed, their biochemical reengineering could have a profound effect on everything from basic molecular 
biology to industrial chemistry. The result--they hope--will be proteins that incorporate amino acids other than the 20 
commonly used by life to construct proteins. By adding these amino acids with completely new types of chemical 
behaviors, Schultz and his colleagues hope to design bacteria to make proteins that work as novel catalysts and drugs, 
or that carry built-in tracers to help researchers decipher their structures. "The thrust of the work is to expand in a 
radical way genetic diversity," says geneticist Steven Briggs, who runs the Novartis Agricultural Discovery Institute, 
a sister organization to GNF. "If Pete can get this to work--and I'm sure he will--it will give us a much bigger toolbox 
to create medicines and other things to benefit society."  
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It could also open a new window on evolution, allowing researchers to explore alternative paths life on Earth may 
have taken in its infancy and the shape it might take elsewhere in the galaxy. Synthetic life, says Steven Benner, 
another pioneer in the field from the University of Florida, Gainesville, allows researchers to explore for the first 
time whether an alternative chemistry of life is truly viable. As Schultz puts it, "If God had worked a seventh day, 
what would life look like today?"  

As scientists, government regulators, and environmentalists squabble over genetically engineering natural DNA and 
proteins, adding synthetic components to the mix may be asking for trouble. If synthetic organisms do come to pass, 
researchers will undoubtedly encounter fears that biotechnology's latest twist could lead to new types of 
superpathogens that will wreak havoc on other forms of life. "I used to joke with members of the [Schultz] group that 
we would know the project was complete when we saw people protesting outside the window," says David Liu, a 
former Schultz grad student, who has since gone on to set up his own research group at Harvard.  

At present, such protests remain hypothetical. The biggest obstacle Schultz and his colleagues now face is that 
creating synthetic life, as Stanford University chemist Eric Kool says, "is a very, very hard problem." Getting all the 
pieces to work "means reengineering 3.5 billion years of evolution," notes Kevan Shokat, a chemist at the University 
of San Francisco and a former group member in the Schultz lab at Berkeley. If the attempt to make synthetic life 
forms has one flaw, Benner adds, "it's that it's so ambitious."  

That suits Schultz just fine. In fact, the sheer scale of the task may give him an edge over the sparse competition. 
Coaxing bacteria to work with new nucleotides and amino acids requires expertise in molecular biology and genetics, 
along with physical, synthetic, and combinatorial chemistry. Not many research labs bring together all those 
specialties. But with roughly 40 members spanning an ever-changing array of disciplines, Schultz's lab does. "I think 
if anyone can do it, Pete Schultz's lab is the place where it can get done," says Christopher Switzer, a chemist at UC 
Riverside who has also worked to add new nucleotide bases to DNA.  

What makes Schultz's goal conceivable is the basic simplicity of life itself. For all their diversity of form, all living 
organisms make use of the same fundamental chemical machinery: DNA and RNA to store genetic information that 
encodes for proteins, which carry out vital cellular chemical reactions. All DNA and RNA is made up of four 
nucleotide bases. All proteins draw on the same 20 amino acids (a 21st, selenocistine, crops up in exceptional cases).  

Nature and synthetic chemists, however, are capable of making hundreds of amino acids that play no part in the 
makeup of living creatures. In the mid-1980s, Schultz began to wonder whether it was possible to incorporate 
nonnatural amino acids into the chemistry of life. Protein chemists had developed machines capable of synthesizing 
short proteins out of both natural and nonnatural amino acids. But coaxing cells to do the same thing would be vastly 
more difficult. Billions of years of evolution had honed their machinery to convert DNA into proteins by a strict 
series of steps. The machinery first turns DNA into messenger RNA (mRNA), which leaves the nucleus and travels 
to ribosomal protein factories in the cytoplasm. In the ribosomes, the mRNA forms a template onto which short 
molecules of transfer RNA (tRNA) can ferry in amino acids and link them into the sequence of a protein. At each 
step, protein-based machines transcribe one code to the next: RNA polymerase converts DNA to mRNA; aminoacyl-
tRNA synthetases link amino acids onto tRNA molecules; and after those tRNAs link up with their mRNA 
counterparts, the ribosomes assemble amino acid cargo on the tRNAs into proteins.  

To create proteins containing nonnatural amino acids meant tweaking those protein-based machines to get them to 
work with amino acids that billions of years of evolution had trained them to avoid. Rather than reengineer the entire 
protein synthesis apparatus at once from DNA onward, Schultz's team opted to climb one mountain at a time. For 
starters, 11 years ago they came up with a test tube-based method to trick the protein assembly apparatus of the 
bacterium Escherichia coli into accepting nonnatural amino acids.  

To do so, they needed to hijack a normal DNA signal and persuade the bacterium to read it as a command to insert a 
nonnatural amino acid. The signals in DNA come in the form of triplets of nucleotide letters in genes. DNA's four 
nucleotide letters--A, C, G, and T--can occur in 64 different combinations of three: ATC, ATA, and so on. Because 
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these 64 triplets need only code for the insertion of 20 amino acids, different combinations sometimes code for the 
same thing. Both TTA and TTG, for example, code for the amino acid leucine. Similarly, three different DNA trios, 
or codons, serve as the "stop" signs that signal the ribosome to stop adding amino acids to a protein. When the 
cellular machinery transcribes DNA into mRNA, the letters change, but the stop signals remain in place. Schultz's 
team modified a certain type of tRNA to recognize one of those mRNA stop signs and insert an nonnatural amino 
acid into a growing protein when it did.  

Using that system, the Schultz team has added more than 80 different nonnatural amino acids to proteins. But the 
method has big drawbacks. One is that it uses synthetic chemistry to attach the nonnatural amino acids to the tRNA 
molecules that recognize the stop codons--an expensive, time-consuming procedure. Once the complexes are 
synthesized, the researchers simply add them to a mix of cellular components in a test tube and hope that some of the 
cellular machinery can incorporate them into proteins. But this hit-or-miss approach is inefficient, and very little of 
the protein with nonnatural amino acids winds up being made. Says Liu: "Translating a protein in vitro is not a high 
yielding process."  

It would be far more efficient if all that work were done inside a living cell. "What we really want to do is build an 
organism--a living organism--where you can add a 21st amino acid to the growth medium and it takes up that amino 
acid and puts it selectively into a protein," says Schultz. Schultz and his collaborators are working on two separate 
tracks to the problem, at least one of which could hit the jackpot sometime in the next year, Schultz believes.  

The group's main effort in creating a synthetic organism builds on the earlier success with stop codons in E. coli. 
Instead of linking the amino acids to the tRNAs themselves, the researchers are trying to adapt the cells' natural 
machinery to do that job. That machinery in this case is a set of proteins known as aminoacyl tRNA synthetases 
(aaRSs). An aaRS is a two-part molecule. One end recognizes a particular triplet sequence in tRNA, and the other 
end binds to the appropriate amino acid. Aminoacyl tRNA synthetases serve as the go-betweens that connect the 
genetic information in DNA and RNA to the chemistry of proteins.  

To coax aaRSs into handling amino acids different from the ones they've evolved to work with, Schultz and 
colleagues systematically change the chemical structure of the enzymes and then test whether they will grab hold of 
nonnatural amino acids and insert them when they see the mRNA signal for their preselected stop codon. At a 
combinatorial chemistry meeting last April in Tucson, Arizona, Schultz reported that his team has achieved some 
success in this effort. The machinery is inefficient: So far it performs its task only about 1% of the time it is signaled 
to do so. Still, Schultz says, "we've got our foot in the door. I think it's no longer a question of will it work, but how 
long it will take."  

Paul Schimmel, an expert on tRNA synthetases at Scripps who does not work with the Schultz group on their project, 
is more skeptical. Aminoacyl tRNA synthetases, Schimmel points out, also play an important role in editing out 
mistakes in the sequence of amino acids. So even if nonnatural amino acids initially get attached to a tRNA, they 
may get plucked off during the editing process. "It's hard to imagine they won't have problems" with this, he says.  

Meanwhile, a more radical approach to reengineering life's chemistry is progressing rapidly as well. For this work, 
Schultz has teamed up with the lab of chemist Floyd Romesberg of Scripps, who worked as a postdoc for Schultz at 
Berkeley before moving to Scripps to start his own lab in mid-1998. Instead of using DNA's stop signals as a 
message to insert nonnatural amino acids, Romesberg's team writes all-new messages by expanding the number of 
letters in DNA.  

The advantage of this strategy, Romesberg says, is that it gets around the limitations of the use of stop codons. A stop 
codon can code for only one nonnatural amino acid at a time, and because stop signs are scattered throughout the 
genome, nonnatural amino acids could wind up being inserted where they are not wanted. By adding new letters to 
DNA, researchers could write a whole new set of codons, encoding for novel amino acids wherever they wanted 
them in the genome. (Schultz's group, meanwhile, is trying to achieve the same goals by creating codons for 
nonnatural amino acids that are four bases long instead of three.)  

Page 3 of 6Science -- Service 289 (5477): 232

10/18/2002http://www.sciencemag.org/cgi/content/full/289/5477/232



The price of that flexibility is complexity. In addition to coming up with the novel DNA bases, the researchers must 
reengineer the proteins that copy DNA and transcribe it to RNA--enzymes known as DNA and RNA polymerases--to 
work with these new bases. Again, part of the task is well in hand. At the American Chemical Society meeting in San 
Francisco in April, Romesberg and Yiqin Wu, a postdoc supported by both the Romesberg and Schultz labs, reported 
that they had come up with a new DNA base that they can add to the DNA chain. This base, called 7-propynyl 
isocarbostyril, or "PICS," pairs with itself, forming a new rung in the DNA ladder alongside pairs of A and T as well 
as G and C. The Romesberg-Schultz team is not the first to have inserted new letters into DNA. But previous 
nonnatural bases had a way of prompting the natural bases in DNA to pair incorrectly. The double PICS base pairs, 
Romesberg says, don't prompt such mispairings. Romesberg's lab also reported that researchers there have isolated a 
DNA polymerase that can copy a single strand of DNA containing the novel code, forming the standard double-
stranded DNA--a key step toward creating cells that can pass down the novel changes in their genetic code.  

Next the researchers will attempt to carry out the same sleight of hand with RNA polymerase, which converts the 
DNA strand into RNA. Because RNA polymerases are nearly identical with DNA polymerases, Romesberg is 
confident that this challenge will fall quickly. Finally, the researchers will then have to find tRNAs and aaRSs to 
recognize the novel bases and insert the nonnatural amino acids. But here again, because Schultz's lab has already 
paved that road, the team members are confident that they can get all the pieces to work together.  

If synthetic life does indeed materialize one day soon in a petri dish in the hills north of San Diego, Schultz expects it 
will quickly attract interest from scientists conducting basic research into the behavior of proteins. Researchers could 
add fluorescent amino acid tags to proteins to signal their location in cells, thereby providing clues to their function. 
They could also insert amino acids bearing heavy atoms that can be used to help protein crystallographers work out 
the three-dimensional structure of proteins.  

Beyond these tools for understanding proteins, Schultz believes researchers will be eager to outfit proteins with new 
functional groups, such as a versatile one known as a ketone, that will serve as hooks for organic chemists to add new 
chemical functions to proteins. Such souped-up proteins could serve as better drugs and improved enzymes for 
industry. "This is a gold mine for chemists," Schultz says. "There are so many things you can think about doing."  

If nothing else, synthetic life should provide new clues about what life might look like beyond Earth. "If you see life 
on Mars, how are you going to recognize it" if it has a different chemical structure? Benner asks. By creating living 
organisms with synthetic DNA and proteins, scientists would know for the first time that life has no fundamental 
requirement for using A's, G's, C's, and T's. That realization might set the stage for understanding still deeper patterns 
common to life everywhere.  

Synthetic life could also provide novel insights into life's distant past on this planet, says Schimmel. For example, he 
says, today's organisms have evolved to have tRNAs to recognize each of DNA's 64 separate codons. Early in life's 
history, however, individual tRNAs probably have worked with more than one codon each. By reengineering tRNAs 
to carry out new functions, Schimmel says, researchers may be able to explore how early organisms could have 
thrived with such an ambiguous system, and how organisms came to make full use of the suite of possible codons. 
"It's a simulated prebiotic experiment to learn what choices were made when life evolved on Earth," says UC 
Riverside's Switzer. "I think it's very important because you can start answering some interesting questions about 
evolution."  

Such experiments are likely to make many people a little queasy and raise prickly questions about safety and ethical 
concerns. And it's in this arena that synthetic life could face its biggest threat. Most concerns will undoubtedly focus 
on whether such organisms are safe or whether they might somehow escape to become nightmarish superbacteria. 
Schultz maintains that because any synthetic organisms would depend on nonnatural amino acids to survive, "there's 
no possibility these organisms could thrive outside the research lab," an assessment that none of the other researchers 
interviewed for this story disputed. In that respect, he and others add, synthetic organisms would be far more tame 
than conventional genetically modified organisms designed to flourish outside the lab.  
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Ethical concerns may prove tougher to grapple with. "Genetics scares people," says Arthur Caplan, the director of the 
Center for Bioethics at the University of Pennsylvania. In a recent Policy Forum in Science (10 December 1999, p. 
2087), Caplan and several colleagues considered a string of objections to experiments in creating novel life forms. 
They concluded that such research is not inherently unethical or antireligious. Though they were discussing 
organisms with standard DNA and amino acids, Caplan says he thinks their conclusions would apply to synthetic life 
as well. "At the end of the day, I don't see any fundamental amorality to making synthetic DNA to regulate a 
synthetic life-form."  

All the same, Romesberg is bracing himself for controversy ahead. "There are going to be people who don't like 
this," he says. "New ideas are often scary until you demonstrate something good that comes of it." But if Schultz's 
high-stakes reengineering project works out, demonstrating a useful payoff will be the easy part.  
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